CONTROL DE MANDO DE VÁLVULAS EN MOTORES DE ENCENDIDO POR CHISPA: REVISIÓN SISTEMÁTICA DE LA LITERATURA

Autores/as

DOI:

https://doi.org/10.47820/recima21.v6i2.6124

Palabras clave:

Control de mando de válvulas, Motor de encendido por chispa, Ciclo de Otto, Ciclo de Miller

Resumen

El texto discute las diferencias entre los ciclos Otto y Miller en los motores de combustión interna, destacando cómo el ciclo Miller, al retrasar el cierre de las válvulas de admisión, mejora la eficiencia térmica al permitir un flujo inverso que reduce el trabajo de compresión. El desarrollo de tecnologías de control electrónico ha sido crucial para aumentar la eficiencia energética y reducir las emisiones de gases de efecto invernadero, especialmente en sectores como la movilidad y la industria. La revisión sistemática propuesta tiene como objetivo analizar las tecnologías aplicadas en los motores Otto y Miller, identificando sus ventajas y desventajas, y siguiendo la evolución de las máquinas térmicas. El trabajo busca alinearse con los Objetivos de Desarrollo Sostenible de la ONU, promoviendo motores más eficientes y contribuyendo a la reducción de emisiones. El objetivo principal es catalogar las innovaciones en el control de válvulas en motores de encendido por chispa, evaluando sus aplicaciones e impactos

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Layra Beatriz da Silva Carvalho

    Universidade Estadual Paulista - UNESP.

  • Gabriel Coelho Rodrigues Alvares

    Universidade Estadual Paulista - UNESP.

  • Alex Pereira Da Cunha

    Universidade Estadual Paulista - UNESP.

  • Masoud Ghanbari Kashani

    Universidade Estadual Paulista - UNESP.

  • Paulo Sergio Barbosa dos Santos

    Universidade Estadual Paulista - UNESP.

  • Isabele Oliveira De Paula

    Universidade Estadual Paulista - UNESP.

Referencias

BABAYEV, Rafig; IM, Hong G.; ANDERSSON, Arne; JOHANSSON, Bengt. Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP. Energy Conversion and Management, v. 264, p. 115698, 15 jul. 2022. Disponível em: https://doi.org/10.1016/j.enconman.2022.115698. DOI: https://doi.org/10.1016/j.enconman.2022.115698

BAÊTA, José Guilherme Coelho; SILVA, Thiago R. V.; NETTO, Nilton A. D.; MALAQUIAS, Augusto C. T.; RODRIGUES FILHO, Fernando Antonio; PONTOPPIDAN, Michael. Full spark authority in a highly boosted ethanol DISI prototype engine. Applied Thermal Engineering, v. 139, p. 35–46, 5 jul. 2018. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.04.112. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.112

CAO, Jiale; LI, Tie; HUANG, Shuai; CHEN, Run; LI, Shiyan; KUANG, Min; YANG, Rundai; HUANG, Yating. Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning. Applied Energy, v. 352, 15 dez. 2023, p. 121957. Disponível em: https://doi.org/10.1016/j.apenergy.2023.121957. DOI: https://doi.org/10.1016/j.apenergy.2023.121957

CHEN, Bin; ZHANG, Li; HAN, Jinlin; ZHANG, Qing. A combination of electric supercharger and Miller Cycle in a gasoline engine to improve thermal efficiency without performance degradation. Case Studies in Thermal Engineering, v. 14, p. 100429, 1 set. 2019. Disponível em: https://doi.org/10.1016/j.csite.2019.100429. DOI: https://doi.org/10.1016/j.csite.2019.100429

CHENGQIAN, Li; WANG, Yaodong; JIA, Boru; ROSKILLY, Tony. Application of Miller Cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine – a numerical approach with model validations. Applied Thermal Engineering, v. 150, 5 mar. 2019. Disponível em: https://doi.org/10.1016/j.applthermaleng.2019.01.056. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.056

CONFORTO, E. C.; AMARAL, D. C.; SILVA, S. L. Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8º Congresso Brasileiro de Gestão de Desenvolvimento de Produto - CBGDP 2011, 2011. p. 12.

DEMIR, Usame; COSKUN, Gokhan; SOYHAN, Hakan S.; TURKCAN, Ali; ALPTEKIN, Ertan; CANAKCI, Mustafa. Effects of variable valve timing on the air flow parameters in an electromechanical valve mechanism – A cfd study. Fuel, v. 308, p. 121956, 15 jan. 2022. Disponível em: https://doi.org/10.1016/j.fuel.2021.121956. DOI: https://doi.org/10.1016/j.fuel.2021.121956

DIESELNET. Motores de ciclo Miller: Guia de tecnologia Dieselnet. [S. l.]: Dieselnet, dez. 2019. Disponível em: https ://dieselnet .com /tech /engine_miller -cycle .php .

DOGRU, B.; LOT, R.; RANGA DINESH, K. K. J. Valve timing optimisation of a spark ignition engine with skip cycle strategy. Energy Conversion and Management, v. 173, p. 95–112, 1 out. 2018. Disponível em: https://doi.org/10.1016/j.enconman.2018.07.064. DOI: https://doi.org/10.1016/j.enconman.2018.07.064

GARCÍA, Antonio; MONSALVE-SERRANO, Javier; MARTÍNEZ-BOGGIO, Santiago; WITTEK, Karsten. Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy, v. 195, p. 117039, 15 mar. 2020. Disponível em: https://doi.org/10.1016/j.energy.2020.117039. DOI: https://doi.org/10.1016/j.energy.2020.117039

HASAN, Ahmad O.; ELGHAWI, U. M.; AL-MUHTASEB, Ala’a H.; ABU-JRAI, A.; AL-RAWASHDEH, Hany; TSOLAKIS, A. Influence of composite after-treatment catalyst on particle-bound polycyclic aromatic hydrocarbons–vapor-phase emitted from modern advanced GDI engines. Fuel, v. 222, p. 424–33, jun. 2018. Disponível em: https://doi.org/10.1016/j.fuel.2018.02.114. DOI: https://doi.org/10.1016/j.fuel.2018.02.114

HE, Yongsheng; LIU, Jim; SUN, David; ZHU, Bin. Development of an aggressive Miller Cycle engine with extended Late-Intake-Valve-Closing and a two-stage turbocharger. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, v. 233, n. 2, p. 413–26, 1 fev. 2019. Disponível em: https://doi.org/10.1177/0954407017745220. DOI: https://doi.org/10.1177/0954407017745220

JUNG, Dongwon; LEE, Byeongseok; SON, Jinwook; WOO, Soohyung; KIM, Youngnam. Development of Gasoline Direct Injection Engine for Improving Brake Thermal Efficiency Over 44%. Journal of Engineering for Gas Turbines and Power, v. 142, n. 101005, 24 set. 2020. Disponível em: https://doi.org/10.1115/1.4048152. DOI: https://doi.org/10.1115/1.4048152

LAPES - LABORATÓRIO DE PESQUISA EM ENGENHARIA DE SOFTWARE. Tools. [S. l.]: Lapes, 2025. Disponível em: https://www.lapes.ufscar.br/resources/tools.

LI, Qingyu; LIU, Jingping; FU, Jianqin; ZHOU, Xianjie; LIAO, Cheng. Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering, v. 137, p. 710–20, 5 jun. 2018a. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.04.017. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.017

LI, Yangtao; KHAJEPOUR, Amir; DEVAUD, Cécile. Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines. Applied Energy, v. 222, p. 199–215, 15 jul. 2018b. Disponível em: https://doi.org/10.1016/j.apenergy.2018.04.012. DOI: https://doi.org/10.1016/j.apenergy.2018.04.012

LIANG, Jichao; ZHANG, Quanchang; CHEN, Zheng; QIAO, Junhao; JIA, Dongdong; WANG, Rumin; MA, Qixin; SHEN, Dazi. Experimental study on combustion and emission characteristics of LIVC Miller cycle with asynchronous intake valves. Fuel, v. 329, p. 125377, 1 dez. 2022. Disponível em: https://doi.org/10.1016/j.fuel.2022.125377. DOI: https://doi.org/10.1016/j.fuel.2022.125377

MILLER, Atkinson; ATKINSON; BUDACK. Conhece os ciclos de combustão? Revista Turbo, 25 jun. 2024. Disponível em: https ://www .turbo .pt /ciclo -miller -atkinson -budack /#:~:text =Estes %20motores %20caraterizam %2Dse %20por ,efici %C3 %AAncia %20em %20detrimento %20da %20pot %C3 %AAncia .

MOHAMMED, Arshed Abdulhamed. Performance analysis of variable valve timing engine to detect some engine faults by using Hilbert Huang transform. Applied Acoustics, v. 194, p. 108775, 15 jun. 2022. Disponível em: https://doi.org/10.1016/j.apacoust.2022.108775. DOI: https://doi.org/10.1016/j.apacoust.2022.108775

PABOCAR, AMP. O que é motor do ciclo Otto: Auto Mecânica e Elétrica. [S. l.]: Pabocar, maio 2020. Disponível em: https ://pabocar .com .br /glossario /o -que -e -motor -de -ciclo -otto /#:~:text =O %20motor %20de %20ciclo %20Otto %20 %C3 %A9 %20conhecido %20por %20sua %20alta ,um %20melhor %20aproveitamento %20do %20combust %C3 %ADvel .

PAN, Junjie; KHAJEPOUR, Amir; LI, Yangtao; YANG, Jing; LIU, Weiqiang. Performance and power consumption optimization of a hydraulic variable valve actuation system. Mechatronics, v. 73, p. 102479, 1 fev. 2021. Disponível em: https://doi.org/10.1016/j.mechatronics.2020.102479. DOI: https://doi.org/10.1016/j.mechatronics.2020.102479

PATRA, Arijit; MAHAPATRA, Ananya; BAGAL, Dilip Kumar; BARUA, Abhishek; JEET, Siddharth; PATNAIK, Dulu. Comparative evaluation of 4-cylinder CI engine camshaft based on FEA using different composition of metal matrix composite. 2nd International Conference on Functional Material, Manufacturing and Performances (ICFMMP-2021), v. 50, p. 692–99, 1 jan. 2022. Disponível em: https://doi.org/10.1016/j.matpr.2021.04.477. DOI: https://doi.org/10.1016/j.matpr.2021.04.477

PEI, Yiqiang; ZHANG, Qirui; PENG, Zhong; AN, Yanzhao; SHI, Hao; QIN, Jing; ZHANG, Bin; ZHANG, Zhiyong; GAO, Dingwei. Thermal efficiency improvement of lean burn high compression ratio engine coupled with water direct injection. Energy Conversion and Management, v. 251, p. 114969, 1 jan. 2022. Disponível em: https://doi.org/10.1016/j.enconman.2021.114969. DOI: https://doi.org/10.1016/j.enconman.2021.114969

PERCEAU, Marcellin; GUIBERT, Philippe; STÉPHANE, Guilain. Zero-dimensional turbulence modeling of a spark ignition engine in a Miller cycle «Dethrottling» approach using a variable valve timing system. Applied Thermal Engineering, v. 199, p. 117535, 25 nov. 2021. Disponível em: https://doi.org/10.1016/j.applthermaleng.2021.117535. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117535

PUJARI, Prashant Chandra; JAIN, Amit; NATH, Devang S.; KUMAR, Naveen. Designing, modeling, and structural analysis of a newly designed double lobe camshaft for a two-stroke compressed air engine. 3rd International Conference on Advances in Mechanical Engineering and Nanotechnology, v. 47, p. 3392–99, 1 jan. 2021. Disponível em: https://doi.org/10.1016/j.matpr.2021.07.277. DOI: https://doi.org/10.1016/j.matpr.2021.07.277

QIAO, Junhao; LIU, Jingping; LIANG, Jichao; JIA, Dongdong; WANG, Rumin; SHEN, Dazi; DUAN, Xiongbo. Experimental investigation the effects of Miller cycle coupled with asynchronous intake valves on cycle-to-cycle variations and performance of the SI engine. Energy, v. 263, p. 125868, 15 jan. 2023. Disponível em: https://doi.org/10.1016/j.energy.2022.125868. DOI: https://doi.org/10.1016/j.energy.2022.125868

RUEDA-VÁIZQUEZ, J. M.; SERRANO, J.; JIMÉNEZ-ESPADAFOR, F. J.; DORADO, M. P. Experimental analysis of the effect of hydrogen as the main fuel on the performance and emissions of a modified compression ignition engine with water injection and compression ratio reduction. Applied Thermal Engineering, v. 238, p. 121933, 1 fev. 2024. Disponível em: https://doi.org/10.1016/j.applthermaleng.2023.121933. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121933

SHEN, Kai; XU, Zishun; CHEN, Hong; ZHANG, Zhendong. Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine. Energy, v. 215, p. 119116, 15 jan. 2021. Disponível em: https://doi.org/10.1016/j.energy.2020.119116. DOI: https://doi.org/10.1016/j.energy.2020.119116

TEODOSIO, Luigi; PIRRELLO, Dino; BERNI, Fabio; DE BELLIS, Vincenzo; LANZAFAME, Rosario; D’ADAMO, Alessandro. Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine. Applied Energy, v. 216, p. 91–104, 15 abr. 2018. Disponível em: https://doi.org/10.1016/j.apenergy.2018.02.032. DOI: https://doi.org/10.1016/j.apenergy.2018.02.032

TRIPATHY, Srinibas; DAS, Abhimanyu; SRIVASTAVA, Dhananjay Kumar. Electro-pneumatic variable valve actuation system for camless engine: Part II-fuel consumption improvement through un-throttled operation. Energy, v. 193, p. 116741, 15 fev. 2020. Disponível em: https://doi.org/10.1016/j.energy.2019.116741. DOI: https://doi.org/10.1016/j.energy.2019.116741

WEBSTER, J.; WATSON, J. T. Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly & The Society for Information Management, v. 26, n. 2, p. 13–23, 2002.

WITTEK, Karsten; GEIGER, Frank; ANDERT, Jakob; MARTINS, Mario; COGO, Vitor; LANZANOVA, Thompson. Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, v. 183, p. 753–63, 1 mar. 2019. Disponível em: https://doi.org/10.1016/j.enconman.2019.01.037. DOI: https://doi.org/10.1016/j.enconman.2019.01.037

XIN, Gu; JI, Changwei; WANG, Shuofeng; HONG, Chen; MENG, Hao; YANG, Jinxin; SU, Fangxu. Experimental study of the effect of variable valve timing on hydrogen-enriched ammonia engine. Fuel, v. 344, p. 128131, 15 jul. 2023. Disponível em: https://doi.org/10.1016/j.fuel.2023.128131. DOI: https://doi.org/10.1016/j.fuel.2023.128131

YANG, Xiaofeng; LIANG, Kun. Measurement and modelling of a linear electromagnetic actuator driven camless valve train for spark ignition IC engines under full load condition. Mechatronics, v. 77, p. 102604, 1 ago. 2021. Disponível em: https://doi.org/10.1016/j.mechatronics.2021.102604. DOI: https://doi.org/10.1016/j.mechatronics.2021.102604

YUAN, Zhipeng; FU, Jianqin; LIU, Qi; MA, Yinjie; ZHAN, Zhangsong. Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation. Energy, v. 157, p. 314–26, 15 ago. 2018. Disponível em: https://doi.org/10.1016/j.energy.2018.05.135. DOI: https://doi.org/10.1016/j.energy.2018.05.135

ZHANG, Beidong; CHEN, Yexin; JIANG, Yankun; LU, Wei; LIU, Wangbin. Effect of compression ratio and Miller cycle on performance of methanol engine under medium and low loads. Fuel, v. 351, p. 128985., 1 nov. 2023; Disponível em: https://doi.org/10.1016/j.fuel.2023.128985. DOI: https://doi.org/10.1016/j.fuel.2023.128985

ZHOU, Xianjie; CHEN, Zheng; ZOU, Peng; LIU, Jingping; DUAN, Xiongbo; QIN, Tao; ZHANG, Shiheng; SHEN, Dazi. Combustion and energy balance analysis of an unthrottled gasoline engine equipped with innovative variable valvetrain. Applied Energy, v. 268, p. 115051, 15 jun. 2020. Disponível em: https://doi.org/10.1016/j.apenergy.2020.115051. DOI: https://doi.org/10.1016/j.apenergy.2020.115051

ZHOU, You; HONG, Wei; XIE, Fangxi; SU, Yan; WANG, Zhongshu; LIU, Yu. Effects of different valve lift adjustment strategies on stoichiometric combustion and lean burn of engine fueled with methanol/gasoline blending. Fuel, v. 339, p. 126934, 1 maio 2023. Disponível em: https://doi.org/10.1016/j.fuel.2022.126934. DOI: https://doi.org/10.1016/j.fuel.2022.126934

ZOU, Peng; LIU, Jingping; ZHOU, Xianjie; CHEN, Zheng; LUO, Baojun; SHEN, Dazi; DUAN, Xiongbo; FU, Jianqin. Effect of a novel mechanical CVVL system on economic performance of a turbocharged spark-ignition engine fuelled with gasoline and ethanol blend. Fuel, v. 263, p. 116697, 1 mar. 2020. Disponível em: https://doi.org/10.1016/j.fuel.2019.116697. DOI: https://doi.org/10.1016/j.fuel.2019.116697

Publicado

14/02/2025

Cómo citar

CONTROL DE MANDO DE VÁLVULAS EN MOTORES DE ENCENDIDO POR CHISPA: REVISIÓN SISTEMÁTICA DE LA LITERATURA. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(2), e626124. https://doi.org/10.47820/recima21.v6i2.6124