MACHINE LEARNING IN MEDICINE: HOW MACHINE LEARNING ALGORITHMS CAN BE APPLIED IN MEDICAL DIAGNOSIS, PROGNOSIS AND DISCOVERING NEW TREATMENTS
DOI:
https://doi.org/10.47820/recima21.v4i12.4708Keywords:
Machine Learning, Medicine, Medical Diagnosis, Prognosis, Treatment Discovery.Abstract
The application of machine learning algorithms in medicine represents a significant revolution in the diagnosis, prognosis, and discovery of medical treatments. This summary explores how these algorithms have been used to enhance medical practice and drive advances in the field of healthcare. The objective of this summary is to highlight the importance and applications of machine learning algorithms in medicine, as well as to summarize their benefits and challenges. The methodology of this summary involved a review of medical and scientific literature, focusing on key research and trends related to the use of machine learning in medicine. Articles and studies addressing medical diagnoses, prognoses, and treatment discovery were analyzed. The use of machine learning algorithms in medicine has revolutionized clinical practice, enabling more accurate diagnoses, personalized prognoses, and accelerating the discovery of new treatments. However, ethical, privacy, and data interpretation challenges remain important considerations. It is essential for the medical and scientific community to continue exploring and harnessing this technology in an ethical and responsible manner to improve global health.
Downloads
References
ARAÚJO-FILHO et al. Inteligência Artificial e Imagem Cardíaca. Arq Bras Cardiol: Imagem cardiovasc., v. 2, n. 3, p. 154-156, 2019.
BRAGA, A. V.; LINS, A. F.; SOARES, L. S.; FLEURY, L. G.; CARVALHO, J. C.; PRADO, R. S. Machine learning: O Uso da Inteligência Artificial na Medicina. Brazilian Journal of Development, Curitiba, v. 5, n. 9, p. 16407-16413, sep. 2019.
FREIRE, A. K. D. S.; ALVES, N. C. C.; SANTIAGO, E. J. P.; TAVARES, A. S.; TEIXEIRA, D. D. S.; CARVALHO, I. A. et al. Panorama no Brasil das doenças cardiovasculares dos últimos quatorze anos na perspectiva da promoção à saúde. Revista Saúde e Desenvolvimento, v. 11, n. 9, p. 21-44, 2017.
GALVÃO, M. C. B.; RICARTE, I. L. M. Revisão sistemática da literatura: conceituação, produção e publicação. LOGEION: Filosofia da informação, Rio de Janeiro, v. 6 n. 1, p.57-73, set. 2019 / fev. 2020.
JUMPER, J. et al. Highly accurate protein structure prediction with Alpha Fold. Science. 15 jul. 2021.
LIMA, M. Perspectivismo maquínico à luz dos ecossistemas comunicacionais. Revista Eletrônica Mutações, v. 9, n. 16, abr. 2018.
MESQUITA, C. T. Inteligência Artificial e Machine Learning em Cardiologia – Uma Mudança de Paradigma. International Journal of Cardiovascular Sciences, v. 30, n. 3, p. 187-188, 2017.
NETO, C. Inteligência artificial e novas tecnologias em saúde: desafios e perspectivas. Brazilian Journal of Development, v. 6, n. 2, 2020.
NUNES, Vitor de Sá Tópicos em visão computacional: uma revisão sistemática com aplicações em economia 4.0. [S. l.: s. n.], 2023.
RIBEIRO, A. H. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications, 9 abr. 2020.
SANT’ANNA, R. M.; CAMACHO, A. C. L. F.; SOUZA, V. M. F.; MENEZES, H. F.; SILVA, R. P. Tecnologias educacionais no cuidado à pacientes com doenças cardiovasculares. Rev Recien., v. 12, n. 37, p. 163-175, 2022.
SANTOS, M. T. et al. Clinical decision support analysis of a microRNA-based thyroid molecular classifier: A real-world, prospective and multicentre validation study. The Lancet Discovery Science (eBioMedicine). 30 jun. 2022.
SENGUPTA, P. P. et al. Cognitive Machine-Learning Algorithm for Cardiac Imaging. Cardiovascular Imaging, v. 9, jun. 2016.
SOUZA FILHO, E. M. de; FERNANDES, F. de A.; SOARES, C. L. de A; SEIXAS, F. L.; SANTOS, A. A. S. M. D. dos; GISMONDI, R. A.; MESQUITA, E. T.; MESQUITA, C. T. Inteligência Artificial em Cardiologia: Conceitos, Ferramentas e Desafios – “Quem Corre é o Cavalo, Você Precisa ser o Jóquei”. Arq Bras Cardiol., v. 114, n. 4, p. 718-725, 2020.
ZERON, R. M. C.; SERRANO JÚNIOR, C. V. Artificial intelligence in the diagnosis of cardiovascular disease. Rev Assoc Med Bras, v. 65, n. 12, p. 1438-1441, 2019.
ZHOU, L.; PAN, S.; WANG, J.; VASILAKOS, A. V. Machine Learning on Big Data: Opportunities and Challenges. Neurocomputing, v. 237, p. 350-61, 2017.
Downloads
Published
How to Cite
License
Copyright (c) 2023 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.