INTERACCIÓN DE LA INFLAMACIÓN CON ENFERMEDADES RESPIRATORIAS

Autores/as

DOI:

https://doi.org/10.47820/recima21.v4i1.2632

Palabras clave:

Inflamasoma., Asma., EPOC., Cáncer de pulmón., Tuberculosis., Covid-19.

Resumen

Introducción: El inflamasoma es un complejo multiproteico formado en el citosol que presenta como función generar las formas ativas de las citocinas IL-1β e IL-18 que van a promover la respuesta inflamatoria en el individuo. La activación del inflamasoma da lugar a la piroptosis, una forma inflamatoria de muerte celular programada de los macrófagos caracterizada por la hinchazón celular, la pérdida de integridad de la membrana plasmática y la liberación de citoquinas proinflamatorias (IL-1β, IL-18, TNF-α, IL-6 e IL-8). Así, se confirma la participación del inflamasoma en la patogénesis de varias enfermedades inflamatorias, cuya acción viene determinada por el tipo de activación, creando así un perfil patogénico diferente para cada enfermedad. Objetivo: Este estudio pretendía abordar la relación entre la activación del inflamasoma y la patogénesis de las enfermedades del tracto respiratorio. Metodología: Se trata de una revisión bibliográfica basada en el análisis de revistas de la plataforma académica: Center for Biotechnology Information (PubMed). La búsqueda se delimitó en un intervalo de 2001 a 2021, utilizando las palabras clave: Inflammassoma; Asthma; COPD; Lower tract infection; Lung cancer; Tuberculosis; Covid-19. Desarrollo: Los resultados obtenidos en los estudios demostraron que existe una influencia del inflamasoma en la patogénesis de las vías respiratorias. Conclusión: A partir de la información obtenida, se pudo observar la importancia del inflamasoma en el desarrollo de la patogénesis de algunas enfermedades del tracto respiratorio, como asma, enfermedad pulmonar obstructiva crónica (EPOC), infecciones agudas del tracto respiratorio inferior, cáncer de pulmón, tuberculosis y Covid-19.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Luana Matias Teixeira, Centro Universitário Barão de Mauá.

    Discente do Curso de Medicina, do Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brasil. 

  • Isabella Silva Barros, Centro Universitário Barão de Mauá.

    Discente do Curso de Medicina, do Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brasil. 

  • Gabriel Soubihe de Sicco, Centro Universitário Barão de Mauá

    Discente do Curso de Medicina, do Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brasil. 

  • Bruno Vinicius de Aquino Mendes, Centro Universitário Barão de Mauá.

    Discente do Curso de Medicina, do Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brasil. 

  • Mariana Scatolin Pinatti, Centro Universitário Barão de Mauá

    Discente do Curso de Medicina, do Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brasil. 

  • Cristiane Tefé-Silva, Centro Universitário Barão de Mauá.

    Docente do Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brasil. 

  • Karina Furlani Zoccal, Centro Universitário Barão de Mauá

    Docente do Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brasil. 

Referencias

Amin, S., Aktar, S., Rahman, M. M., & Chowdhury, M. M. H. (2022). NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes and infection, 24(1), 104913. https://doi.org/10.1016/j.micinf.2021.104913

Bade, B. C., & Dela Cruz, C. S. (2020). Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clinics in chest medicine, 41(1), 1–24. https://doi.org/10.1016/j.ccm.2019.10.001

Barbosa, M. T., Morais-Almeida, M., Sousa, C. S., & Bousquet, J. (2021). The "Big Five" Lung Diseases in CoViD-19 Pandemic - a Google Trends analysis. Pulmonology, 27(1), 71–72. https:// doi.org/10.1016/j.pulmoe.2020.06.008

Behar, S. M., Carpenter, S. M., Booty, M. G., Barber, D. L., & Jayaraman, P. (2014). Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Seminars in immunology, 26(6), 559–577. https://doi.org/10.1016/j.smim.2014.09.003

Chang, A. B., Chang, C. C., O'Grady, K., & Torzillo, P. J. (2009). Lower respiratory tract infections. Pediatric clinics of North America, 56(6), 1303–1321. https://doi.org/10.1016/j.pcl.2009.09.003

Chen, I. Y., Moriyama, M., Chang, M. F., & Ichinohe, T. (2019). Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Frontiers in microbiology, 10, 50. https://doi.org/10.3389/fmicb.2019.00050

Cheng, L., Alexander, R. E., Maclennan, G. T., Cummings, O. W., Montironi, R., Lopez-Beltran, A., Cramer, H. M., Davidson, D. D., & Zhang, S. (2012). Molecular pathology of lung cancer: key to personalized medicine. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 25(3), 347–369. https://doi.org/10.1038/modpathol.2011.215

Donovan, C., Liu, G., Shen, S., Marshall, J. E., Kim, R. Y., Alemao, C. A., Budden, K. F., Choi, J. P., Kohonen-Corish, M., El-Omar, E. M., Yang, I. A., & Hansbro, P. M. (2020). The role of the microbiome and the NLRP3 inflammasome in the gut and lung. Journal of leukocyte biology, 108(3), 925–935. https://doi.org/10.1002/JLB.3MR0720-472RR

Earn, D., Dushoff, J., & Levin, S. (2002). Ecology and evolution of the flu. Trends in Ecology and Evolution, 17, 334–340. https://davidearn.mcmaster.ca/publications/EarnEtAl2002

Feldman, C., & Shaddock, E. (2019). Epidemiology of lower respiratory tract infections in adults. E x p e r t r e v i e w o f r e s p i r a t o r y m e d i c i n e, 1 3 (1) , 6 3 – 7 7 . https://doi.org/ 10.1080/17476348.2019.1555040

Figueira, M. B. de A. (2019). Avaliação de polimorfismos de base única (SNP) em genes do inflamassoma e componentes relacionados em pacientes com tuberculose. Tede.ufam.edu.br. https://tede.ufam.edu.br/handle/tede/7637

Filho, E. B. da S., Silva, A. L., Santos, A. O., Dall’acqua, D. S. V., & Souza, L. F. B. (2017). Infecções Respiratórias de Importância Clínica: uma Revisão Sistemática: RESPIRATORY INFECTIONS OF CLINICAL IMPORTANCE: A SYSTEMATIC REVIEW. REVISTA FIMCA, 4(1), 7-16. https://doi.org/10.37157/fimca.v4i1.5

Franchi, L., Eigenbrod, T., Muñoz-Planillo, R., & Nuñez, G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature immunology, 10(3), 241–247. https://doi.org/10.1038/ni.1703

Freeman, T. L., & Swartz, T. H. (2020). Targeting the NLRP3 Inflammasome in Severe COVID-19. Frontiers in immunology, 11, 1518. https://doi.org/10.3389/fimmu.2020.01518

Furin, J., Cox, H., & Pai, M. (2019). Tuberculosis. Lancet (London, England), 393(10181), 1642– 1656. https://doi.org/10.1016/S0140-6736(19)30308-3

Gans, M. D., & Gavrilova, T. (2020). Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatric respiratory reviews, 36, 118–127. https://doi.org/10.1016/j.prrv.2019.08.002

Gereige, R. S., & Laufer, P. M. (2013). Pneumonia. Pediatrics in review, 34(10), 438–456. https:// doi.org/10.1542/pir.34-10-438

Hamid, Q., & Tulic, M. (2009). Immunobiology of asthma. Annual review of physiology, 71, 489– 507. https://doi.org/10.1146/annurev.physiol.010908.163200

Hogg, J. C., & Timens, W. (2009). The pathology of chronic obstructive pulmonary disease. Annual review of pathology, 4, 435–459. https://doi.org/10.1146/annurev.pathol.4.110807.092145

Hosseinian, Nima; CHO, Young; LOCKEY, Richard F.; KOLLIPUTI, Narasaiah. The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances In Respiratory Disease, [S.L.], v. 9, n. 4, p. 188-197, 26 maio 2015. SAGE Publications. http://dx.doi.org/ 10.1177/1753465815586335.

Hui, D. S. C., & Zumla, A. (2019). Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infectious disease clinics of North America, 33(4), 869–889. https://doi.org/ 10.1016/j.idc.2019.07.001

Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature reviews. Molecular cell biology, 23(1), 3–20. https://doi.org/10.1038/ s41580-021-00418-x

Khan MK, Islam MN, Ferdous J, Alam MM. An Overview on Epidemiology of Tuberculosis. Mymensingh Medical Journal : MMJ. 2019 Jan;28(1):259-266. PMID: 30755580.

Kips J. C. (2001). Cytokines in asthma. The European respiratory journal. Supplement, 34, 24s– 33s. https://doi.org/10.1183/09031936.01.00229601

LEE, Tae-Hyeong; SONG, Hyun Ji; PARK, Choon-Sik. Role of inflammasome activation in development and exacerbation of asthma. Asia Pacific Allergy, [S.L.], v. 4, n. 4, p. 187, 2014. Asia Pacific Association of Allergy, Asthma, and Clinical Immunology. http://dx.doi.org/10.5415/ apallergy.2014.4.4.187

Liang, M., Chen, X., Wang, L., Qin, L., Wang, H., Sun, Z., Zhao, W., & Geng, B. (2020). Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. Journal of experimental & clinical cancer research : CR, 39(1), 176. https://doi.org/10.1186/s13046-020-01688-7

Lima, D. S. (2019). Caracterização genética e funcional do inflamassoma na resposta à micobactéria e no desenvolvimento de diferentes formas clínicas de tuberculose pulmonar. Tese de Doutorado, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo. DOI: 10.11606/T.42.2019.tde-13122019-173816. Recuperado em 2023-01-05, de www.teses.usp.br

Loftus, P. A., & Wise, S. K. (2016). Epidemiology of asthma. Current opinion in otolaryngology & head and neck surgery, 24(3), 245–249. https://doi.org/10.1097/MOO.0000000000000262

MacNee W. (2005). Pathogenesis of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2(4), 258–291. https://doi.org/10.1513/pats.200504-045SR

Mason R. J. (2020). Pathogenesis of COVID-19 from a cell biology perspective. The European respiratory journal, 55(4), 2000607. https://doi.org/10.1183/13993003.00607-2020

Markelić, I., Hlapčić, I., Čeri, A., Radić Antolic, M., Samaržija, M., Popović-Grle, S., Vukić Dugac, A., & Rumora, L. (2022). Activation of NLRP3 inflammasome in stable chronic obstructive pulmonary disease. Scientific reports, 12(1), 7544. https://doi.org/10.1038/s41598-022-11164-1

Mims J. W. (2015). Asthma: definitions and pathophysiology. International forum of allergy & rhinology, 5 Suppl 1, S2–S6. https://doi.org/10.1002/alr.21609

Mizgerd J. P. (2008). Acute lower respiratory tract infection. The New England journal of medicine, 358(7), 716–727. https://doi.org/10.1056/NEJMra074111

Mohamadian, M., Chiti, H., Shoghli, A., Biglari, S., Parsamanesh, N., & Esmaeilzadeh, A. (2021). COVID-19: Virology, biology and novel laboratory diagnosis. The journal of gene medicine, 23(2), e3303. https://doi.org/10.1002/jgm.3303

Pellegrini, C., Antonioli, L., Lopez-Castejon, G., Blandizzi, C., & Fornai, M. (2017). Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Frontiers in immunology, 8, 36. https://doi.org/10.3389/fimmu.2017.00036

Rabe, K. F., Hurd, S., Anzueto, A., Barnes, P. J., Buist, S. A., Calverley, P., Fukuchi, Y., Jenkins, C., Rodriguez-Roisin, R., van Weel, C., Zielinski, J., & Global Initiative for Chronic Obstructive Lung Disease (2007). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American journal of respiratory and critical care medicine, 176(6), 532–555. https://doi.org/10.1164/rccm.200703-456SO

Sefik, E., Qu, R., Junqueira, C., Kaffe, E., Mirza, H., Zhao, J., Brewer, J. R., Han, A., Steach, H. R., Israelow, B., Blackburn, H. N., Velazquez, S. E., Chen, Y. G., Halene, S., Iwasaki, A., Meffre, E., Nussenzweig, M., Lieberman, J., Wilen, C. B., Kluger, Y., … Flavell, R. A. (2022). Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature, 606(7914), 585–593. https://doi.org/10.1038/s41586-022-04802-1

Seyed Hosseini, E., Riahi Kashani, N., Nikzad, H., Azadbakht, J., Hassani Bafrani, H., & Haddad Kashani, H. (2020). The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology, 551, 1–9. https://doi.org/10.1016/ j. virol.2020.08.011

Sharma, A., Ahmad Farouk, I., & Lal, S. K. (2021). COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses, 13(2), 202. https://doi.org/10.3390/v13020202

Silva, Denise Rossato, Mello, Fernanda Carvalho de Queiroz e Migliori, Giovanni Battista. Tuberculosis series 2020. Jornal Brasileiro de Pneumologia [online]. 2020, v. 46, n. 02. [Acessado 5 Janeiro 2023], e20200027. Disponível em: <https://doi.org/10.36416/1806-3756/e20200027>. Epub 2 Mar 2020. ISSN 1806-3756. https://doi.org/10.36416/1806-3756/e20200027.

Singh, S. P., Pritam, M., Pandey, B., & Yadav, T. P. (2021). Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. Journal of medical virology, 93(1), 275–299. https://doi.org/10.1002/jmv.26254

Smith, C. J., Perfetti, T. A., Rumple, M. A., Rodgman, A., & Doolittle, D. J. (2001). "IARC Group 2B carcinogens" reported in cigarette mainstream smoke. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 39(2), 183–205. https://doi.org/10.1016/s0278-6915(00)00164-2

Spitz, M. R., Wei, Q., Dong, Q., Amos, C. I., & Wu, X. (2003). Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 12(8), 689–698.

Stern, J., Pier, J., & Litonjua, A. A. (2020). Asthma epidemiology and risk factors. Seminars in immunopathology, 42(1), 5–15. https://doi.org/10.1007/s00281-020-00785-1

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Swanson, K. V., Deng, M., & Ting, J. P. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature reviews. Immunology, 19(8), 477–489. https://doi.org/10.1038/s41577-019-0165-0

Teuwen, L.-A., Geldhof, V., Pasut, A., & Carmeliet, P. (2020). COVID-19: the vasculature unleashed. Nature Reviews Immunology. https://doi.org/10.1038/s41577-020-0343-0

Theofani, E., Semitekolou, M., Morianos, I., Samitas, K., & Xanthou, G. (2019). Targeting NLRP3 Inflammasome Activation in Severe Asthma. Journal of clinical medicine, 8(10), 1615. https://doi.org/10.3390/jcm8101615

Thomas M, Bomar PA. Upper Respiratory Tract Infection. [Updated 2022 Jun 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532961/

Travis WD. Patologia do Câncer de Pulmão: Conceitos Atuais. Clínicas em Medicina Torácica. 2020 mar;41(1):67-85. DOI: 10.1016/j.ccm.2019.11.001.

GBD 2017 Influenza Collaborators (2019). Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. The Lancet. Respiratory medicine, 7(1), 69–89. https://doi.org/10.1016/S2213- 2600(18)30496-X

Tuder, R. M., & Petrache, I. (2012). Pathogenesis of chronic obstructive pulmonary disease. The Journal of Clinical Investigation, 122(11), 4300. https://doi.org/10.1172/JCI66725

National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. (2014). The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. In PubMed. Centers for Disease Control and Prevention (US). https://pubmed.ncbi.nlm.nih.gov/24455788/

Wang, Z., Zhang, S., Xiao, Y., Zhang, W., Wu, S., Qin, T., Yue, Y., Qian, W., & Li, L. (2020). NLRP3 Inflammasome and Inflammatory Diseases. Oxidative medicine and cellular longevity, 2020, 4063562. https://doi.org/10.1155/2020/4063562

Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID19): A Review. JAMA, 324(8), 782–793. https://doi.org/10.1001/jama.2020.12839

Williams, E. J., Negewo, N. A., & Baines, K. J. (2021). Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. The Journal of allergy and clinical immunology, 147(6), 2060–2062. https://doi.org/10.1016/j.jaci.2021.04.022

Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and Multiorgan Response. Current problems in cardiology, 45(8), 100618. https://doi.org/10.1016/j.cpcardiol.2020.100618

Zhao, N., Di, B., & Xu, L. L. (2021). The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine & growth factor reviews, 61, 2–15. https://doi.org/10.1016/j.cytogfr.2021.06.002

Zhang, J., Xu, Q., Sun, W., Zhou, X., Fu, D., & Mao, L. (2021). New Insights into the Role of NLRP3 Inflammasome in Pathogenesis and Treatment of Chronic Obstructive Pulmonary Disease. Journal of inflammation research, 14, 4155–4168. https://doi.org/10.2147/JIR.S324323

Zheng M. (2016). Classification and Pathology of Lung Cancer. Surgical oncology clinics of North America, 25(3), 447–468. https://doi.org/10.1016/j.soc.2016.02.003

Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses - drug discovery and therapeutic options. Nature reviews. Drug discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37

Publicado

18/01/2023

Cómo citar

INTERACCIÓN DE LA INFLAMACIÓN CON ENFERMEDADES RESPIRATORIAS. (2023). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 4(1), e412632. https://doi.org/10.47820/recima21.v4i1.2632