ANÁLISIS DE GENES EXPRESADOS DIFERENCIALMENTE EN MUESTRAS DE CÁNCER DE MAMA DEL SEQUENCE READ ARCHIVE (SRA)
DOI:
https://doi.org/10.47820/recima21.v5i3.4955Palabras clave:
Perfilación de la Expresión Génica, Biología Computacional, Neoplasias de la Mama, RNA-seqResumen
El cáncer de mama (CM) es una enfermedad altamente prevalente en las mujeres con millones de casos nuevos cada año. Entre los avances tecnológicos destaca la tecnología RNA-seq, que ha permitido comprender mejor la expresión génica, permitiendo desvelar interacciones proteicas entre tumores de mama tempranos y recurrentes (posmastectomía). Han surgido nuevas herramientas basadas en bioinformática para seguir el avance de la secuenciación, siendo los principales ejemplos las plataformas de análisis online Galaxy y WebGestalt. Además, se estableció el Archivo de lectura de secuencias (SRA) como un depósito público para datos de secuencias de próxima generación, al igual que el uso del depósito de datos genómicos funcionales Gene Expression Omnibus (GEO). En este trabajo, utilizando el análisis de secuenciación de ARN total, fue posible demostrar comparaciones generalizadas de CM en etapa temprana con CM recurrente. Además, se utilizaron Gene Ontology (GO), KEGG y Reactome para evaluar las relaciones funcionales y las vías mejoradas entre la CM en etapa temprana y la CM recurrente posmastectomía. En conclusión, gracias al desarrollo de este estudio fue posible descubrir nuevos biomarcadores que podrían ser utilizados como futuras dianas terapéuticas, permitiendo un mejor diagnóstico y pronóstico en CM con el objetivo de mejorar la supervivencia global de los pacientes.
Descargas
Referencias
AFGAN, Enis et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, v. 46, n. W1, p. W537–W544, 2018. DOI: https://doi.org/10.1093/nar/gky379
CAMPÊLO DE SOUSA, Maisa; CAMPÊLO DE SOUSA, Camila. Diagnóstico de câncer de mama por exames genéticos: uma revisão de literatura (Diagnosis of breast cancer by genetic exams: a literature review). Brazilian Journal of health Review Braz. J. Hea. Rev, Teresina & Codó, n. 2, p. 1786–1797, 2020. DOI: https://doi.org/10.34119/bjhrv3n2-039
CHEN, Jiarui et al. KEGG-expressed genes and pathways in triple negative breast cancer. Medicine (Baltimore), v. 99, n. 18, e19986, 2020. Doi: 10.1097 / MD.0000000000019986. PMCID: PMC7440132. PMID: 32358373. DOI: https://doi.org/10.1097/MD.0000000000019986
COSTA-SILVA, Juliana; DOMINGUES, Douglas; LOPES, Fabricio Martins. RNA-Seq differential expression analysis: An extended review and a software tool. PLoS ONE, New Jersey (EUA), 21 dec. 2017. DOI: https://doi.org/10.1371/journal.pone.0190152
KEENE, Kimberly S. et al. Molecular determinants of post-mastectomy breast cancer recurrence. NPJ Breast Cancer, v. 4, n. 34, 2018. Doi: 10.1038 / s41523-018-0089-z. PMCID: PMC6185974. PMID: 30345349.
KLOET, Frans M. van der; et al. Increased comparability between RNA-Seq and microarray data by utilization of gene sets. PLoS Comput Biol., v. 16, n. 9, e1008295, 2020. Doi: 10.1371 / journal.pcbi.1008295. PMCID: PMC7549825. PMID: 32997685. DOI: https://doi.org/10.1371/journal.pcbi.1008295
LEINONEN, Rasko; SUGAWARA, Hideaki; SHUMWAY, Martin. The sequence read archive. Nucleic Acids Research, v. 39, n. 1, p. 3, 2011. DOI: https://doi.org/10.1093/nar/gkq1019
LIAO, Yuxing et al. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic acids research, v. 47, n. W1, p. W199–W205, 2019. DOI: https://doi.org/10.1093/nar/gkz401
OSHLACK, Alicia; ROBINSON, Mark; YOUNG, Matthew. From RNA-seq Reads to Differential. Genome Biology, Parkville, Australia, p. 10, 2010. DOI: https://doi.org/10.1186/gb-2010-11-12-220
PAL, Bhupinder et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J., v. 40, n. 11, e107333, 2021. Doi: 10.15252 / embj.2020107333. PMCID: PMC8167363. PMID: 33950524. DOI: https://doi.org/10.15252/embj.2020107333
PARSONS, Joseph; FRANCAVILLA, Chiara. ‘Omics Approaches to Explore the Breast Cancer Landscape. Front Cell Dev Biol., v. 7, n. 395, 2020. Doi: 10.3389 / fcell.2019.00395. PMCID: PMC6987401. PMID: 32039208. DOI: https://doi.org/10.3389/fcell.2019.00395
RAO, Arunagiri Kuha Deva Magendhra; et al. Identification of lncRNAs associated with early-stage breast cancer and their prognostic implications. Mol Oncol., v 13, n. 6, p. 1342–1355, 2019. Doi: 10.1002 / 1878- 0261.12489. PMCID: PMC6547626. PMID: 30959550. DOI: https://doi.org/10.1002/1878-0261.12489
RODRIGUEZ-ESTEBAN, Raul; JIANG, Xiaoyu. Differential gene expression in disease: a comparison between high-throughput studies and the literature. BMC Medical Genomics, v. 10, n. 59, 2017. DOI: https://doi.org/10.1186/s12920-017-0293-y
SIMPSON, Peter T. et al. Molecular evolution of breast cancer. Journal of Pathology, 2005. DOI: https://doi.org/10.1002/path.1691
STUPNIKOV, A. et al. Robustness of differential gene expression analysis of RNA-seq. Comput Struct Biotechnol J., v. 19, p. 3470–3481, 2021. Doi: 10.1016/j.csbj.2021.05.040. PMCID: PMC8214188. PMID: 34188784. DOI: https://doi.org/10.1016/j.csbj.2021.05.040
THE GENE ONTOLOGY CONSORTIUM. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research, v. 49, n. D1, p. D325-D334, 2021. https://doi.org/10.1093/nar/gkaa1113. DOI: https://doi.org/10.1093/nar/gkaa1113
TIAN, Zelin et al. Identification of Important Modules and Biomarkers in Breast Cancer Based on WGCNA. Onco Targets Ther., v. 13, p. 6805–6817, 2020. Doi: 10.2147 / OTT.S258439. PMCID: PMC7367932. PMID: 32764968. DOI: https://doi.org/10.2147/OTT.S258439
WU, Shaocheng et al. Cellular, transcriptomic and isoform heterogeneity of breast cancer cell line revealed by full-length single-cell RNA sequencing. Comput Struct Biotechnol J., v. 18, p. 676–685, 2020. Doi: 10.1016 / j.csbj.2020.03.005. PMCID: PMC7114460. PMID: 32257051. DOI: https://doi.org/10.1016/j.csbj.2020.03.005
ZHANG, Fan et al. Identification of novel alternative splicing biomarkers for breast cancer with LC/MS/MS and RNA-Seq. BMC Bioinformatics, v. 21, n. 541, 2020. Doi: 10.1186 / s12859-020-03824-8. PMCID: PMC7713335. PMID: 33272210.
ZHAO, Yingwen et al. A Literature Review of Gene Function Prediction by Modeling Gene Ontology. Front Genet., v. 11, n. 400, 2020. Doi: 10.3389 / fgene.2020.00400. PMCID: PMC7193026. PMID: 32391061. DOI: https://doi.org/10.3389/fgene.2020.00400
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.