REVISIÓN SISTEMÁTICA COMPARATIVA DE CICLOS DE GENERACIÓN DE ENERGÍA COMBINADA BASADOS EN GASIFICACIÓN DE BIOMASA Y GAS NATURAL/BIOMASA
DOI:
https://doi.org/10.47820/recima21.v5i2.4874Palabras clave:
Gasificación., Ciclo Combinado, Gas Natural, Biomasa, Energía RenovableResumen
En los últimos años, la necesidad y la búsqueda global de alternativas a los combustibles fósiles y el desarrollo de la utilización de biocombustibles se ha vuelto crucial. Dentro de las fuentes renovables disponibles, la biomasa se destaca por su abundancia y bajo costo. Este estudio presenta una revisión sistemática de la literatura sobre los ciclos combinados de generación de energía, explorando tanto los ciclos impulsados únicamente por la gasificación de biomasa como los ciclos combinados convencionales con gas natural, integrados con sistemas de gasificación. Se empleó una metodología específica utilizando el software Start para abarcar una amplia gama de artículos disponibles en plataformas de búsqueda. Los principales hallazgos de estos artículos se sintetizaron para resaltar las contribuciones recientes sobre el tema, con el objetivo de facilitar el acceso a la información y promover el desarrollo de futuras investigaciones en este campo.
Descargas
Citas
ASGARI, N.; KHOSHBAKHTI SARAY, R.; MIRMASOUMI, S. Energy and exergy analyses of a novel seasonal CCHP system driven by a gas turbine integrated with a biomass gasification unit and a LiBr-water absorption chiller. Energy Conversion and Management, [S. l.], v. 220, n. January, p. 113096, 2020. DOI: 10.1016/j.enconman.2020.113096. Disponível em: https://doi.org/10.1016/j.enconman.2020.113096. DOI: https://doi.org/10.1016/j.enconman.2020.113096
BACCIOLI, A.; ANTONELLI, M.; DESIDERI, U.; GROSSI, A. Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications. Energy, [S. l.], v. 161, p. 456–469, 2018. DOI: 10.1016/j.energy.2018.07.150. Disponível em: https://doi.org/10.1016/j.energy.2018.07.150. DOI: https://doi.org/10.1016/j.energy.2018.07.150
BAI, Li; ASADOLLAHZADEH, Muhammad; CHAUHAN, Bhupendra Singh; ABDRABBOH, Mostafa; FAYED, Mohamed; AYED, Hamdi; MOULDI, Abir; MAREFATI, Mohammad. A new biomass-natural gas dual fuel hybrid cooling and power process integrated with waste heat recovery process: Exergoenvironmental and exergoeconomic assessments. Process Safety and Environmental Protection, [S. l.], v. 176, n. February, p. 867–888, 2023. DOI: 10.1016/j.psep.2023.06.037. Disponível em: https://doi.org/10.1016/j.psep.2023.06.037. DOI: https://doi.org/10.1016/j.psep.2023.06.037
BEHESHTI, S. M.; GHASSEMI, H.; SHAHSAVAN-MARKADEH, R. Process simulation of biomass gasification in a bubbling fluidized bed reactor. Energy Conversion and Management, [S. l.], v. 94, p. 345–352, 2015. DOI: 10.1016/j.enconman.2015.01.060. Disponível em: http://dx.doi.org/10.1016/j.enconman.2015.01.060. DOI: https://doi.org/10.1016/j.enconman.2015.01.060
CAO, Yan; DHAHAD, Hayder A.; HUSSEN, Hasanen M.; ATTIA, El Awady; RASHIDI, Shima; SHAMSELDIN, Mohamed A.; FAHAD ALMOJIL, Sattam; IBRAHIM ALMOHANA, Abdulaziz; FAHMI ALALI, Abdulrhman. Techno-economic investigation and multi-criteria optimization of a novel combined cycle based on biomass gasifier, S-CO2 cycle, and liquefied natural gas for cold exergy usage. Sustainable Energy Technologies and Assessments, [S. l.], v. 52, n. PB, p. 102187, 2022. DOI: 10.1016/j.seta.2022.102187. Disponível em: https://doi.org/10.1016/j.seta.2022.102187. DOI: https://doi.org/10.1016/j.seta.2022.102187
CAO, Yan; DHAHAD, Hayder A.; TOGUN, Hussein; ANQI, Ali E.; FAROUK, Naeim; FARHANG, Babak. Proposal and thermo-economic optimization of using LNG cold exergy for compressor inlet cooling in an integrated biomass fueled triple combined power cycle. International Journal of Hydrogen Energy, [S. l.], v. 46, n. 29, p. 15351–15366, 2021. DOI: 10.1016/j.ijhydene.2021.02.111. Disponível em: https://doi.org/10.1016/j.ijhydene.2021.02.111. DOI: https://doi.org/10.1016/j.ijhydene.2021.02.111
CAO, Yihuai; WANG, Jiangjiang; LI, Yiming; FU, Wenfeng; LIU, Boxiang. Thermodynamic analysis of biomass and liquefied natural gas complementary CCHP system with liquid air energy storage. Energy Conversion and Management, [S. l.], v. 283, n. February, p. 116925, 2023. DOI: 10.1016/j.enconman.2023.116925. Disponível em: https://doi.org/10.1016/j.enconman.2023.116925. DOI: https://doi.org/10.1016/j.enconman.2023.116925
CARRIVEAU, Rupp; EBRAHIMI, Mehdi; TING, David S. K.; MCGILLIS, Andrew. Transient thermodynamic modeling of an underwater compressed air energy storage plant: Conventional versus advanced exergy analysis. Sustainable Energy Technologies and Assessments, [S. l.], v. 31, n. December 2018, p. 146–154, 2019. DOI: 10.1016/j.seta.2018.12.003. Disponível em: https://doi.org/10.1016/j.seta.2018.12.003. DOI: https://doi.org/10.1016/j.seta.2018.12.003
CHANG, Le; WU, Zhixin; GHADIMI, Noradin. A new biomass-based hybrid energy system integrated with a flue gas condensation process and energy storage option: An effort to mitigate environmental hazards. Process Safety and Environmental Protection, [S. l.], v. 177, n. June, p. 959–975, 2023. DOI: 10.1016/j.psep.2023.07.045. Disponível em: https://doi.org/10.1016/j.psep.2023.07.045. DOI: https://doi.org/10.1016/j.psep.2023.07.045
CHEN, Heng; LU, Di; AN, Jizhen; QIAO, Shichao; DONG, Yuehong; JIANG, Xue; XU, Gang; LIU, Tong. Thermo-Economic analysis of a novel biomass Gasification-Based power system integrated with a supercritical CO2 cycle and a Coal-Fired power plant. Energy Conversion and Management, [S. l.], v. 266, n. June, p. 1–18, 2022. DOI: 10.1016/j.enconman.2022.115860. DOI: https://doi.org/10.1016/j.enconman.2022.115860
CONFORTO, Edivandro Carlos; AMARAL, Daniel Capaldo; SILVA, Sérgio Luis Da. Roteiro para revisão bibliográfica sistemática : aplicação no desenvolvimento de produtos e gerenciamento de projetos. In: 8° Congresso Brasileiro de Gestão de Desenvolviemnto de Produto - CNGDP 2011, [S. l.], n. 1998, p. 1–12, 2011. Disponível em: http://www.ufrgs.br/cbgdp2011/downloads/9149.pdf.
EBRAHIMI, Armin; ZIABASHARHAGH, Masoud. Energy and exergy analyses of a novel integrated process configuration for tri-generation heat, power and liquefied natural gas based on biomass gasification. Energy Conversion and Management, [S. l.], v. 209, n. February, p. 112624, 2020. DOI: 10.1016/j.enconman.2020.112624. Disponível em: https://doi.org/10.1016/j.enconman.2020.112624. DOI: https://doi.org/10.1016/j.enconman.2020.112624
FABBRI, Sandra; SILVA, Cleiton; HERNANDES, Elis; OCTAVIANO, Fábio; DI THOMMAZO, André; BELGAMO, Anderson. Improvements in the StArt tool to better support the systematic review process. ACM International Conference Proceeding Series, [S. l.], v. 01-03-June, 2016. DOI: 10.1145/2915970.2916013. DOI: https://doi.org/10.1145/2915970.2916013
GE, Huijun; ZHANG, Haifeng; GUO, Wanjun; SONG, Tao; SHEN, Laihong. System simulation and experimental verification: Biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation. Fuel, [S. l.], v. 241, n. August 2018, p. 118–128, 2019. DOI: 10.1016/j.fuel.2018.11.091. Disponível em: https://doi.org/10.1016/j.fuel.2018.11.091. DOI: https://doi.org/10.1016/j.fuel.2018.11.091
GHIAMI, Shamsoddin; KHALLAGHI, Navid; BORHANI, Tohid N. Techno-economic and environmental assessment of staged oxy-co-firing of biomass-derived syngas and natural gas. Energy Conversion and Management, [S. l.], v. 243, n. June, p. 114410, 2021. DOI: 10.1016/j.enconman.2021.114410. Disponível em: https://doi.org/10.1016/j.enconman.2021.114410. DOI: https://doi.org/10.1016/j.enconman.2021.114410
GHIAT, Ikhlas; ALNOUSS, Ahmed; MCKAY, Gordon; AL-ANSARI, Tareq. Biomass-based integrated gasification combined cycle with post-combustion CO2 recovery by potassium carbonate: Techno-economic and environmental analysis. Computers and Chemical Engineering, [S. l.], v. 135, p. 106758, 2020. DOI: 10.1016/j.compchemeng.2020.106758. Disponível em: https://doi.org/10.1016/j.compchemeng.2020.106758. DOI: https://doi.org/10.1016/j.compchemeng.2020.106758
HAI, Tao; ALSHAHRI, Abdullah H.; MOHAMMED, Amin Salih; SHARMA, Aman; ALMUJIBAH, Hamad R.; MOHAMMED METWALLY, Ahmed Sayed; ULLAH, Mirzat. Performance assessment and multiobjective optimization of a biomass waste-fired gasification combined cycle for emission reduction. Chemosphere, [S. l.], v. 334, n. May, p. 138980, 2023. DOI: 10.1016/j.chemosphere.2023.138980. Disponível em: https://doi.org/10.1016/j.chemosphere.2023.138980. DOI: https://doi.org/10.1016/j.chemosphere.2023.138980
HAI, Tao; DHAHAD, Hayder A.; ZHOU, Jincheng; ATTIA, El Awady; KH, Teeba Ismail; SHAMSELDIN, Mohamed A.; ALMOJIL, Sattam Fahad; ALMOHANA, Abdulaziz Ibrahim; ALALI, Abdulrhman Fahmi. The novel integration of biomass gasification plant to generate efficient power, and the waste recovery to generate cooling and freshwater: A demonstration of 4E analysis and multi-criteria optimization. Sustainable Energy Technologies and Assessments, [S. l.], v. 53, n. PC, p. 102588, 2022. DOI: 10.1016/j.seta.2022.102588. Disponível em:
https://doi.org/10.1016/j.seta.2022.102588. DOI: https://doi.org/10.1016/j.seta.2022.102588
HAMRANG, Farzad; SHOKRI, Afshar; SEYED MAHMOUDI, S. M.; EHGHAGHI, Biuk; ROSEN, Marc A. Performance analysis of a new electricity and freshwater production system based on an integrated gasification combined cycle and multi-effect desalination. Sustainability (Switzerland), [S. l.], v. 12, n. 19, p. 1–29, 2020. DOI: 10.3390/su12197996. DOI: https://doi.org/10.3390/su12197996
KARTAL, Furkan; ÖZVEREN, Uğur. Energy and exergy analysis of entrained bed gasifier/GT/Kalina cycle model for CO2 co-gasification of waste tyre and biochar. Fuel, [S. l.], v. 331, n. September 2022, 2023. DOI: 10.1016/j.fuel.2022.125943. DOI: https://doi.org/10.1016/j.fuel.2022.125943
LASHGARI, Fatemeh; BABAEI, Seyed Mostafa; PEDRAM, Mona Zamani; ARABKOOHSAR, Ahmad. Comprehensive analysis of a novel integration of a biomass-driven combined heat and power plant with a compressed air energy storage (CAES). Energy Conversion and Management, [S. l.], v. 255, n. January, p. 115333, 2022. DOI: 10.1016/j.enconman.2022.115333. Disponível em: https://doi.org/10.1016/j.enconman.2022.115333. DOI: https://doi.org/10.1016/j.enconman.2022.115333
LI, Xuhao; ZHONG, Kunyu; FENG, Li. Machine learning-based metaheuristic optimization of an integrated biomass gasification cycle for fuel and cooling production. Fuel, [S. l.], v. 332, n. P1, p. 125969, 2023. DOI: 10.1016/j.fuel.2022.125969. Disponível em: https://doi.org/10.1016/j.fuel.2022.125969. DOI: https://doi.org/10.1016/j.fuel.2022.125969
MOHAMED, Usama; ZHAO, Ying jie; YI, Qun; SHI, Li juan; WEI, Guo qing; NIMMO, William. Evaluation of life cycle energy, economy and CO2 emissions for biomass chemical looping gasification topower generation. Renewable Energy, [S. l.], v. 176, p. 366–387, 2021. DOI: 10.1016/j.renene.2021.05.067. Disponível em: https://doi.org/10.1016/j.renene.2021.05.067. DOI: https://doi.org/10.1016/j.renene.2021.05.067
MOHARAMIAN, Anahita; SOLTANI, Saeed; ROSEN, Marc A.; MAHMOUDI, S. M. S. Advanced exergy and advanced exergoeconomic analyses of biomass and natural gas fired combined cycles with hydrogen production. Applied Thermal Engineering, [S. l.], v. 134, n. September 2017, p. 1–11, 2018. a. DOI: 10.1016/j.applthermaleng.2018.01.103. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.01.103. DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.103
MOHARAMIAN, Anahita; SOLTANI, Saeed; ROSEN, Marc A.; MAHMOUDI, S. M. S.; MOROSUK, Tatiana. Exergoeconomic analysis of natural gas fired and biomass post-fired combined cycle with hydrogen injection into the combustion chamber. Journal of Cleaner Production, [S. l.], v. 180, p. 450–465, 2018. b. DOI: 10.1016/j.jclepro.2018.01.156. Disponível em: https://doi.org/10.1016/j.jclepro.2018.01.156. DOI: https://doi.org/10.1016/j.jclepro.2018.01.156
MORRONE, Pietropaolo; AMELIO, Mario; ALGIERI, Angelo; PERRONE, Diego. Hybrid biomass and natural gas combined cycles: Energy analysis and comparison between different plant configurations. Energy Conversion and Management, [S. l.], v. 267, n. June, p. 115874, 2022. DOI: 10.1016/j.enconman.2022.115874. Disponível em: https://doi.org/10.1016/j.enconman.2022.115874. DOI: https://doi.org/10.1016/j.enconman.2022.115874
MUSHARAVATI, Farayi; KHOSHNEVISAN, Alireza; ALIRAHMI, Seyed Mojtaba; AHMADI, Pouria; KHANMOHAMMADI, Shoaib. Multi-objective optimization of a biomass gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network. Chemosphere, [S. l.], v. 287, n. P2, p. 131980, 2022. DOI: 10.1016/j.chemosphere.2021.131980. Disponível em: https://doi.org/10.1016/j.chemosphere.2021.131980. DOI: https://doi.org/10.1016/j.chemosphere.2021.131980
NIU, Miaomiao; XIE, Jun; LIANG, Shaohua; LIU, Liheng; WANG, Liang; PENG, Yu. Simulation of a new biomass integrated gasification combined cycle (BIGCC) power generation system using Aspen Plus: Performance analysis and energetic assessment. International Journal of Hydrogen Energy, [S. l.], v. 46, n. 43, p. 22356–22367, 2021. DOI: 10.1016/j.ijhydene.2021.04.076. Disponível em: https://doi.org/10.1016/j.ijhydene.2021.04.076. DOI: https://doi.org/10.1016/j.ijhydene.2021.04.076
PIHL ERIK, E.; HEYNE, Stefan; THUNMAN, Henrik; JOHNSSON, Filip. Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (CCGT) plants for natural gas. Energy, [S. l.], v. 35, n. 10, p. 4042–4052, 2010. DOI: 10.1016/j.energy.2010.06.008. Disponível em: http://dx.doi.org/10.1016/j.energy.2010.06.008. DOI: https://doi.org/10.1016/j.energy.2010.06.008
RAZMI, Amir Reza; HEYDARI AFSHAR, Hasan; POURAHMADIYAN, Ali; TORABI, M. Investigation of a combined heat and power (CHP) system based on biomass and compressed air energy storage (CAES). Sustainable Energy Technologies and Assessments, [S. l.], v. 46, n. April, 2021. DOI: 10.1016/j.seta.2021.101253. DOI: https://doi.org/10.1016/j.seta.2021.101253
REN, Jie; QIAN, Zuoqin; FEI, Chunguang; LU, Ding; ZOU, Yincai; XU, Chen; LIU, Lu. Thermodynamic, exergoeconomic, and exergoenvironmental analysis of a combined cooling and power system for natural gas-biomass dual fuel gas turbine waste heat recovery. Energy, [S. l.], v. 269, n. May 2022, p. 126676, 2023. DOI: 10.1016/j.energy.2023.126676. Disponível em: https://doi.org/10.1016/j.energy.2023.126676. DOI: https://doi.org/10.1016/j.energy.2023.126676
REN, Siyue; FENG, Xiao; WANG, Yufei. Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system. Renewable and Sustainable Energy Reviews, [S. l.], v. 147, n. May, p. 111208, 2021. DOI: 10.1016/j.rser.2021.111208. Disponível em: https://doi.org/10.1016/j.rser.2021.111208. DOI: https://doi.org/10.1016/j.rser.2021.111208
SHARAFI LALEH, Shayan; ZEINALI, Mohsen; MAHMOUDI, S. M. S.; SOLTANI, Saeed; ROSEN, Marc A. Biomass co-fired combined cycle with hydrogen production via proton exchange membrane electrolysis and waste heat recovery: Thermodynamic assessment. International Journal of Hydrogen Energy, [S. l.], v. 48, n. 87, p. 33795–33809, 2023. DOI: 10.1016/j.ijhydene.2023.05.137. Disponível em: https://doi.org/10.1016/j.ijhydene.2023.05.137. DOI: https://doi.org/10.1016/j.ijhydene.2023.05.137
SOLTANI, S.; MAHMOUDI, S. M. S.; YARI, M.; ROSEN, M. A. Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy Conversion and Management, [S. l.], v. 70, p. 107–115, 2013. DOI: 10.1016/j.enconman.2013.03.002. Disponível em: http://dx.doi.org/10.1016/j.enconman.2013.03.002. DOI: https://doi.org/10.1016/j.enconman.2013.03.002
TAN, Liping; CAI, Lei; FU, Yidan; ZHOU, Zining; GUAN, Yanwen. Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system. Renewable Energy, [S. l.], v. 208, n. February, p. 94–104, 2023. DOI: 10.1016/j.renene.2023.03.014. Disponível em: https://doi.org/10.1016/j.renene.2023.03.014. DOI: https://doi.org/10.1016/j.renene.2023.03.014
TAN, Liping; CAI, Lei; XIANG, Yanlei; GUAN, Yanwen; LIU, Wenbin. Investigation on oxy-fuel biomass integrated gasification combined cycle system with flue gas as gasifying agent. Biomass and Bioenergy, [S. l.], v. 166, n. December 2021, p. 106621, 2022. DOI: 10.1016/j.biombioe.2022.106621. Disponível em: https://doi.org/10.1016/j.biombioe.2022.106621. DOI: https://doi.org/10.1016/j.biombioe.2022.106621
VERA, David; JURADO, Francisco; CARPIO, José; KAMEL, Salah. Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry. Energy, [S. l.], v. 144, p. 41–53, 2018. DOI: 10.1016/j.energy.2017.11.152. DOI: https://doi.org/10.1016/j.energy.2017.11.152
WANG, Hongliang; SU, Zhanguo; ABED, Azher M.; NAG, Kaushik; DEIFALLA, Ahmed; MAREFATI, Mohammad; MAHARIQ, Ibrahim; WEI, Yanming. Multi-criteria evaluation and optimization of a new multigeneration cycle based on solid oxide fuel cell and biomass fuel integrated with a thermoelectric generator, gas turbine, and methanation cycle. Process Safety and Environmental Protection, [S. l.], v. 170, n. December 2022, p. 139–156, 2023. DOI: 10.1016/j.psep.2022.11.087. Disponível em: https://doi.org/10.1016/j.psep.2022.11.087. DOI: https://doi.org/10.1016/j.psep.2022.11.087
WEBSTER, Jane; WATSON, Richard. MIS Quarterly. Analyzing the Past To Prepare for the Future : Writing a Literature Review, [S. l.], v. 26, n. 2, p. 13–23, 2002.
XIANG, Yanlei; CAI, Lei; GUAN, Yanwen; LIU, Wenbin; HE, Tianzhi; LI, Juan. Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures. Energy, [S. l.], v. 179, p. 571–580, 2019. DOI: 10.1016/j.energy.2019.05.011. Disponível em: https://doi.org/10.1016/j.energy.2019.05.011. DOI: https://doi.org/10.1016/j.energy.2019.05.011
YANG, Kun; ZHU, Neng; WANG, Daquan; CHANG, Chen. Thermoeconomic analysis of co-firing combined cooling, heating, and power system based on energy level. Energy Conversion and Management, [S. l.], v. 197, n. June, p. 111900, 2019. DOI: 10.1016/j.enconman.2019.111900. Disponível em: https://doi.org/10.1016/j.enconman.2019.111900. DOI: https://doi.org/10.1016/j.enconman.2019.111900
ZANG, Guiyan; TEJASVI, Sharma; RATNER, Albert; LORA, Electo Silva. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis. Bioresource Technology, [S. l.], v. 255, n. January, p. 246–256, 2018. DOI: 10.1016/j.biortech.2018.01.093. Disponível em: https://doi.org/10.1016/j.biortech.2018.01.093. DOI: https://doi.org/10.1016/j.biortech.2018.01.093
ZHANG, Xiaofeng; LIU, Xiaobo; SUN, Xiaoqin; JIANG, Changwei; LI, Hongqiang; SONG, Quanbin; ZENG, Jing; ZHANG, Guoqiang. Thermodynamic and economic assessment of a novel CCHP integrated system taking biomass, natural gas and geothermal energy as co-feeds. Energy Conversion and Management, [S. l.], v. 172, n. May, p. 105–118, 2018. DOI: 10.1016/j.enconman.2018.07.002. Disponível em: https://doi.org/10.1016/j.enconman.2018.07.002. DOI: https://doi.org/10.1016/j.enconman.2018.07.002
ZHANG, Xiaofeng; ZENG, Rong; MU, Kang; LIU, Xiaobo; SUN, Xiaoqin; LI, Hongqiang. Exergetic and exergoeconomic evaluation of co-firing biomass gas with natural gas in CCHP system integrated with ground source heat pump. Energy Conversion and Management, [S. l.], v. 180, n. August 2018, p. 622–640, 2019. DOI: 10.1016/j.enconman.2018.11.009. Disponível em: https://doi.org/10.1016/j.enconman.2018.11.009. DOI: https://doi.org/10.1016/j.enconman.2018.11.009
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.