RESISTÊNCIA ANTIMICROBIANA PÓS-COVID-19: REVISÃO DE LITERATURA

Autores

  • Beatriz Izilda Minante
  • Giovana Girardi Ticotosti
  • Isabella Silva Barros
  • Marcela Bocalete Balieiro
  • Milena Euzébio Rodrigues da Silva
  • Cristiane Tefé-Silva
  • Karina Furlani Zoccal https://orcid.org/0000-0002-9988-1009

DOI:

https://doi.org/10.47820/recima21.v3i3.1266

Palavras-chave:

COVID-19, Infecções, Resistência

Resumo

O novo Coronavírus atinge as células do trato respiratório inferior, iniciando um processo inflamatório. Diante dessa infecção, compete ao sistema imune a eliminação de agentes, a homeostasia celular, reparação tecidual e geração de imunidade de memória. Quando há uma falha nessa via, esse sistema encontra uma série de dificuldades para a retomada do equilíbrio, além de infecções secundárias, levando a complicações clínicas adicionais. Assim, este estudo buscou abordar a resposta imunológica frente ao Sars-CoV-2, e as principais infecções secundárias pós-Covid (bacterianas e fúngicas) e a resistência antimicrobiana nesse contexto. Trata-se de uma revisão de literatura realizada a partir da análise de periódicos provenientes das seguintes plataformas acadêmicas: Google Acadêmico, Center for Biotechnology Information (PubMed), Science Direct, Biblioteca eletrônica Scientific Eletronic Library Online (SciELO) e Scopus. A pesquisa foi delimitada em um intervalo de 2003 a 2021, usando como ferramenta de busca palavras-chaves COVID-19; Resposta imunológica; Infecções bacterianas; Infecções fúngicas; Resistência. Os resultados obtidos nos estudos demonstram o impacto das infecções secundárias na mortalidade, com isso, dentre as principais infecções, se destacam as bacterianas (84%), incluindo principalmente os agentes: Staphylococcus aureus, Streptococcus pneumoniae, Clostridioides difficile e Mycoplasma pneumoniae. Quanto às infecções secundárias fúngicas, as espécies Aspergillus sp. e Candida acometeram principalmente pacientes em estado grave. Com base nos dados, uma problemática evidente foi à dificuldade de identificação do agente causador da infecção secundária, acarretando em cenário de intensa utilização de antibióticos de amplo espectro, contribuindo para a seleção de patógenos resistentes e, de maneira controversa, a piora no prognóstico do paciente.

Downloads

Os dados de download ainda não estão disponíveis.

Biografias do Autor

  • Beatriz Izilda Minante

    Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

  • Giovana Girardi Ticotosti

    Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

  • Isabella Silva Barros

    Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

  • Marcela Bocalete Balieiro

    Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

  • Milena Euzébio Rodrigues da Silva

    Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

  • Cristiane Tefé-Silva

    Docente do Centro Universitário Barão de Mauá.

  • Karina Furlani Zoccal

    Docente do Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brasil. 

Referências

Beadling, C., & Slifka, M. K. (2004). How do viral infections predispose patients to bacterial infections?. Current opinion in infectious diseases, 17(3), pp. 185–191.

Blanco-Melo, D., et al. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 181(5), pp. 1036–1045.e9.

Brasil. Agência Brasil. Empresa Brasil de Comunicação (ed.). (2020). Organização Mundial da Saúde declara pandemia de coronavírus: atualmente, ao menos 115 países têm casos da doença. Df, 2020. Color. Disponível em: https://agenciabrasil.ebc.com.br/geral/noticia/2020-03/organizacao-mundial-da-saude-declara-pandemia-de-coronavirus. Acesso em: 19 jul. 2021.

Broggi, A., et al. (2020). Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science (New York, N.Y.), 369(6504), pp. 706–712.

Caglar, K., et al. (2011). Investigation of interleukin-10, tumor necrosis factor-alpha and interferon-gamma expression in experimental model of pulmonary aspergillosis. Mikrobiyol Bul, 45(2), pp. 344-352.

Cai, S., Sun, W., Li, M. & Dong, L. (2020). A complex COVID-19 case with rheumatoid arthritis treated with tocilizumab. Clin Rheumatol 39, pp. 2797–2802.

Camargo, J. F., et al. (2015). Impaired T Cell Responsiveness to Interleukin-6 in Hematological Patients with Invasive Aspergillosis. PLOS ONE, p. e.0123171.

Chaudhry, B., et al. (2021). Post COVID-19 MSSA pneumonia. SAGE open medical case reports, 9, p. 2050313X211005996.

Contou, D., et al. (2020). Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Annals of intensive care, 10(1), pp. 1-9.

Cusumano, J. A., et al. (2020). Staphylococcus aureus bacteremia in patients infected with COVID-19: a case series. In: Open forum infectious diseases, 7(11), p. ofaa518.

Duployez, C., et al. (2020). Panton-Valentine Leukocidin-Secreting Staphylococcus aureus Pneumonia Complicating COVID-19. Emerging infectious diseases, 26(8), pp. 1939–1941.

Fan, B. E., Lim, K., Chong, V., Chan, S., Ong, K. H., & Kuperan, P. (2020). COVID-19 and mycoplasma pneumoniae coinfection. American journal of hematology, 95(6), pp. 723–724.

Galvão, M. H. R. & Roncalli, A. G. (2020). Factors associated with increased risk of death from covid-19: a survival analysis based on confirmed cases. Revista Brasileira de Epidemiologia, v. 23.

Garcia-Vidal, C., et al. (2021). Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, 27(1), pp. 83-88, 2021.

Gonçalves, A. H. (2011). MECANISMO DE AÇÃO E TOXICIDADE DA ANFOTERICINA B NO TRATAMENTO DE MICOSES. 2011. 29 f. Monografia - Curso de Especialização de Microbiologia, ICB Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais - Ufmg., Belo Horizonte, 2011. Disponível em: https://repositorio.ufmg.br/handle/1843/BUOS-99WH86. Acesso em: 03 jul. 2021.

Granata, G., et al. (2020). The burden of Clostridioides difficile infection during the COVID-19 pandemic: a retrospective case-control study in Italian hospitals (CloVid). Journal of clinical medicine, 9(12), p. 3855.

Guo, Yan-Rong., et al. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), pp. 1-10.

Habas, K., et al. (2020). Resolution of coronavirus disease 2019 (COVID-19). Expert review of anti-infective therapy, 18(12), pp. 1201-1211.

Hajjeh, R. A., et al. (2004). Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. Journal of clinical microbiology, 42(4), pp. 1519-1527.

Hsu, J. (2020). How covid-19 is accelerating the threat of antimicrobial resistance. Bmj, [S.L.], pp. 1-2.

Hughes, S., et al. (2020). Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clinical Microbiology and Infection, 26 (10), pp. 1395-1399.

Huttner, B.D., Catho, G., Pano-Pardo, J.R., Pulcini, C. & Schouten, J. (2020). COVID-19: don't neglect antimicrobial stewardship principles!. Clinical Microbiology And Infection, 26(7), pp. 808-810.

In, Ying-Hui., et al. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 7(1), pp. 1-23.

Iriarte, D. A. (2020). Resistência Bacteriana aos Macrolídeos: Um olhar sobre a azitromicina. 2020. 15 f. TCC (Graduação) - Curso de Medicina, Ufscar, São Carlos. Disponível em: https://repositorio.ufscar.br/bitstream/handle/ufscar/13515/TCC.%20Daniel%20Iriarte.pdf?sequence=1&isAllowed=y. Acesso em: 20 jul. 2021.

Iser, B. P. M., Sliva, I., Raymundo, V. T., Poleto, M. B., Schuelter-Trevisol, F. & Bobinski, F. (2020). Suspected COVID-19 case definition: a narrative review of the most frequent signs and symptoms among confirmed cases. Epidemiologia e Serviços de Saúde, 29(3).

Jia, L., et al. (2017). Mechanisms of severe mortality-associated bacterial co-infections following influenza virus infection. Frontiers in cellular and infection microbiology, 7, p. 338.

Lai, C. C. & Yu, W. L. (2020). COVID-19 associated with pulmonary aspergillosis: A literature review. Journal of Microbiology, Immunology and Infection, 54(1), pp. 46-53.

Lansbury, L., Lim, B., Baskaran, V. & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. Journal Of Infection, 81(2), pp. 266-275.

Lewandowski, K., et al. (2020). Clostridioides difficile infection in coronavirus disease 2019: an underestimated problem. Pol Arch Intern Med, 131(2), pp. 121-127.

Li, W., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), pp. 450-454.

Li, Q., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine, 382(13), pp. 1199-1207.

Liu, Y. C., Kuo, R. L. & Shih, S. R. (2020). COVID-19: The first documented coronavirus pandemic in history. Biomedical journal, 43(4), pp. 328-333.

Lu, R., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet, 395(10224), pp. 565-574.

Major, J., et al. (2020). Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science, 369(6504), pp. 712-717.

Manohar, P., et al. (2020). Secondary bacterial infections in patients with viral pneumonia. Frontiers in medicine, 7, p. 420.

Meijer, E. F. J., et al. (2020). Azole-resistant COVID-19-associated pulmonary aspergillosis in an immunocompetent host: a case report. Journal of Fungi, 6(2), p. 79.

Melenotte, C., et al. (2020). Immune responses during COVID-19 infection. Oncoimmunology, 9(1), p. 1807836, 2020.

Paces, J., et al. (2020). COVID-19 and the immune system. Physiological research, 69(3).

Palamim, C. V. C. & Marson, F. A. L. (2020). Covid-19–the availability of icu beds in brazil during the onset of pandemic. Annals of global health, 86(1).

Permán, J., et al. (2020). Fungal co-infection in COVID-19 patients: Should we be concerned? Revista Iberoamericana de Micologia, 37, pp.41-46.

Qin, C., et al. (2020). Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clinical infectious diseases, 71(15), pp. 762-768.

Rawson, M. T., et al. (2020). Bacterial and Fungal Coinfection in Individuals With Coronavirus: a rapid review to support covid-19 antimicrobial prescribing. Clinical Infectious Diseases, 71(9), pp. 2459-2468.

Rawson, M. T., et al. (2021). Understanding the role of bacterial and fungal infection in COVID-19. Clinical Microbiology and Infection, 27, pp. 9-11.

Rezende, C., et al. (2017). Mecanismos de ação dos antifúngicos. Revista unifev: ciência & tecnologia, 2, p. 316.

Ripa, M., et al. (2021). Secondary infections in patients hospitalized with COVID-19: incidence and predictive factors. Clinical Microbiology and Infection, 27(3), pp. 451-457.

Sainz, J., et al. (2007). Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunology Letters, 109, pp. 76-82.

Salehi, M., et al. (2020). Oropharyngeal candidiasis in hospitalised COVID‐19 patients from Iran: Species identification and antifungal susceptibility pattern. Mycoses, 63(8), pp. 771-778.

Silva, K. M. R., et al. (2021). Implicações do uso de antibióticos durante a pandemia de COVID-19. Research, Society And Development, 10(7), pp. 1-9.

Song, G. & Liang, G. (2020). Fungal Co-infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Micopatologia, p. 599-606.

Tan, L., et al. (2020). Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal transduction and targeted therapy, 5(1), pp. 1-3.

Tudesq, Jean-Jacques., et al. (2019). Invasive Pulmonary Aspergillosis in Nonimmunocompromised Hosts. Seminars in Respiratory and Critical Care Medicine, pp. 540-547.

Tufan, A., Güler, A. A., Matucci-Cerinic, M. (2020). COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish journal of medical sciences, 50(SI-1), pp. 620-632.

Trouillet-Assant, S., et al. (2020). Type I IFN immunoprofiling in COVID-19 patients. Journal of Allergy and Clinical Immunology, 146(1),p p. 206-208.

Wiederhold, N. P. & Verweij, P. E. (2020). Aspergillus fumigatus and pan-azole resistance: who should be concerned?. Current Opinion in Infectious Diseases, 33(4), pp. 290-297.

Yang, L., et al. (2020). COVID-19: immunopathogenesis and Immunotherapeutics. Signal transduction and targeted therapy, 5(128), pp. 1-8.

Yu, X., et al. (2021). Intensive Cytokine induction in Pandemic H1N1 Influenza Virus Infection Accompanied by Robust Production of IL-10 and IL-6. PLOS ONE, p. 9.

Zhang, G., et al. (2020). Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. Journal of Clinical Virology, 127, p. 104364.

Publicado

23/03/2022

Como Citar

RESISTÊNCIA ANTIMICROBIANA PÓS-COVID-19: REVISÃO DE LITERATURA. (2022). RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218, 3(3), e331266. https://doi.org/10.47820/recima21.v3i3.1266