GENE MTHFR C677T (rs1801133) E SUSCETIBILIDADE AO TRANSTORNO DO ESPECTRO AUTISTA (TEA)
DOI:
https://doi.org/10.47820/recima21.v5i2.4866Palavras-chave:
Transtorno do Espectro Autista (TEA). MTHFR. Polimorfismo. Ácido fólico.Resumo
O Transtorno do Espectro Autista (TEA) é uma condição complexa que provavelmente é causada por uma combinação de fatores genéticos, ambientais e bioquímicos. Objetivo: Potencial associação entre o gene MTHFR C677T (rs1801133) e o TEA e a regulação da expressão gênica. Estudos demonstraram resultados positivos com a utilização de suplementos como as vitaminas do complexo B, especialmente o ácido fólico, vitaminas A, C e E, e ainda o consumo de uma dieta a base de frutas, legumes , verduras, cereais e gorduras insaturadas. Metodologia: Revisão da literatura científica em bases de dados públicas sobre o assunto abordado. Resultados: Estudos têm investigado a possível relação entre polimorfismos no gene MTHFR C677T e o risco de TEA. Esses polimorfismos reduzem a atividade enzimática do MTHFR, que é importante para a metilação do DNA. A suplementação de ácido fólico durante a gravidez tem se mostrado eficaz tanto na redução do risco de TEA nos descendentes, quanto na melhoria dos sintomas e comportamentos associados ao transtorno. Além disso, outros nutrientes importantes na síntese do folato, como as vitaminas B12, B6, colina e antioxidantes, também devem ser considerados. Conclusões: A variante genética T é comum na população geral, sendo uma maior porcentagem em heterozigotos. A associação entre a variante MTHFR C677T (rs1801133) e o TEA sugere benefícios da suplementação com ácido fólico, vitaminas do complexo B, A, C e E, bem como uma dieta rica em frutas, vegetais, cereais integrais e gorduras. É importante também considerar outras enzimas como a CBS, COMT, MTRR e BHMT.
Downloads
Referências
Adams JB, Audhya T, Seis E, Gehn E, Fimbres V, et al. Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder—A Randomized, Controlled 12-Month Trial. 018 Mar; 10(3):369. doi: 10.3390/nu10030369. DOI: https://doi.org/10.3390/nu10030369
Al-Beltagy S, El-Serogy H, Elaziz S, Al-Gohary T. A Study of Plasma Homocysteine Level in Children with Autism. Asian J. Pediatr. Res. 2022;10:31–37. DOI: https://doi.org/10.9734/ajpr/2022/v10i3199
Ali A, Waly MI, Al-Farsi YM, Essa MM, Al-Sharbati MM, et al. Hyperhomocysteinemia among Omani autistic children: a case-control study. 2011;58(4):547-51. DOI: https://doi.org/10.18388/abp.2011_2223
Braz J, Autism and Asperger Syndrome: an overview. Psychiatry. May 2006;28(suppl 1). https://doi.org/10.1590/S1516-44462006000500002. DOI: https://doi.org/10.1590/S1516-44462006000500002
Christensen DL, Baio J, Braun KVN, Bilder D, Charles J, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012;65:3:1-23. DOI: https://doi.org/10.15585/mmwr.ss6503a1
Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu. Rev. Anim. Biosci. 2019;7:263–287. DOI: https://doi.org/10.1146/annurev-animal-020518-115206
Dos Santos PAC, Longo D, Brandalise APC, Schüler-Faccini L. MTHFR C677T is not a risk factor for autism spectrum disorders in South Brazil. 2010 Aug;20(4):187-9. doi: 10.1097/YPG.0b013e32833a2220. DOI: https://doi.org/10.1097/YPG.0b013e32833a2220
El-Baz F, El-Aal MA, Kamal MT, Sadek AA, Othman AA. Study of the C677T and 1298AC polymorphic genotypes of MTHFR Gene in autism spectrum disorder. 2017 Sep;9(9):5287–5293. doi: 10.19082/5287. DOI: https://doi.org/10.19082/5287
Froost P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. 1995 May;10(1):111-3. doi: 10.1038/ng0595-111. DOI: https://doi.org/10.1038/ng0595-111
Gas L, Cut SS, Han Y, Dai W, Su YY, et al. Does Periconceptional Fish Consumption by Parents Affect the Incidence of Autism Spectrum Disorder and Intelligence Deficiency? A Case-control Study in Tianjin, China. 2016 Dec;29(12):885-892. doi: 10.3967/bes2016.118.
Geschwind DH, Genetics of Autism Spectrum Disorders. Trends Cogn Sci. 2011 Sep;15(9): 409–416. doi: 10.1016/j.tics.2011.07.003. DOI: https://doi.org/10.1016/j.tics.2011.07.003
Goin-Kochel R. The MTHFR 677C→T polymorphism and behaviors in children with autism: Exploratory genotype-phenotype correlations. Autism Research April 2009;2(2):98-108. DOI:10.1002/aur.70.
Goin-Kochel RP, Porter AE, Peters SU, Shinawi M, Sahoo T, et al. The MTHFR 677C-->T polymorphism and behaviors in children with autism: exploratory genotype-phenotype correlations. 2009 Apr;2(2):98-108. doi: 10.1002/aur.70. DOI: https://doi.org/10.1002/aur.70
Goyette P, Pai A, Frosst P. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). 1998 Aug;9(8):652-6. doi: 10.1007/s003359900838. DOI: https://doi.org/10.1007/s003359900838
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44. doi: 10.1038/s41588-019-0344-8. DOI: https://doi.org/10.1038/s41588-019-0344-8
Guo T, Chen H, Liu B, Ji W, Yang C. Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. 2012 Aug;16(8):968-73. doi: 10.1089/gtmb.2012.0091. DOI: https://doi.org/10.1089/gtmb.2012.0091
Hiraoka M, Kagawa Y. 2017 Sep;57(5):142-149. doi: 10.1111/cga.12232. DOI: https://doi.org/10.1111/cga.12232
House JS, Mendez M, Maguire RL, Gonzales-Nahm S, Huang Z, et al. Periconceptional Maternal Mediterranean Diet Is Associated with Favorable Offspring Behaviors and Altered CpG Methylation of Imprinted Genes. 2018;6:107. doi: 10.3389/fcell.2018.00107. DOI: https://doi.org/10.3389/fcell.2018.00107
Hustad S, Midttun O, Schneede J, Vollset SE, Grotmol T, et al. The methylenetetrahydrofolate reductase 677C-->T polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. 2007 May;80(5):846-55. doi: 10.1086/513520. DOI: https://doi.org/10.1086/513520
James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. 2006 Dec 5; 141B(8):947–956. doi: 10.100ajmg.b.30366. DOI: https://doi.org/10.1002/ajmg.b.30366
Jolien Steenweg-de Graaff J, Ghassabian A, Jaddoe VWV, Henning Tiemeier H, Roz SJ. Folate concentrations during pregnancy and autistic traits in the offspring. The Generation R Study. June 2015;25(3):431–433, https://doi.org/10.1093/eurpub/cku126. DOI: https://doi.org/10.1093/eurpub/cku126
Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW et al. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 2017;14:78. DOI: https://doi.org/10.1186/s12986-017-0233-z
Landa RJ. Diagnosis of autism spectrum disorders in the first 3 years of life. Nature Clinical Practice Neurology. 2008;4:138–147. DOI: https://doi.org/10.1038/ncpneuro0731
Levine SZ, Kodesh A, Viktorin A, Smith L, Her R, et al. Association of Maternal Use of Folic Acid and Multivitamin Supplements in the Periods Before and During Pregnancy with the Risk of Autism Spectrum Disorder in Offspring. 2018 Feb 1;75(2):176-184. doi: 10.1001/jamapsychiatry.2017.4050. DOI: https://doi.org/10.1001/jamapsychiatry.2017.4050
Li CX, Liu YG, Che YP, Ou JL, Ruan WC, et al. Association Between MTHFR C677T Polymorphism and Susceptibility to Autism Spectrum Disorders: A Meta-Analysis in Chinese Han Population. 2021;9:598805. doi: 10.3389/fped.2021.598805. DOI: https://doi.org/10.3389/fped.2021.598805
Li YM, Shen YD, Li YJ, Sun GL, Liu H, et al. Maternal dietary patterns, supplements intake and autism spectrum disorders: A preliminary case-control study. 2018 Dec;97(52):e13902. doi: 10.1097/MD.0000000000013902. DOI: https://doi.org/10.1097/MD.0000000000013902
Liu X, Zou M, Sun C, Wu L, Chen WX. Prenatal Folic Acid Supplements and Offspring’s Autism Spectrum Disorder: A Meta-analysis and Meta-regression. J. Autism Dev. Disord. 2022;52: 522–539. DOI: https://doi.org/10.1007/s10803-021-04951-8
Liu X, Solehdin F, Cohen IL, Gonzalez MG, Jenkins EC, et al. Population- and family- based studies associate the MTHFR gene with idiopathic autism in simplex families. 2011 Jul;41(7):938-44. doi: 10.1007/s10803-010-1120-x. DOI: https://doi.org/10.1007/s10803-010-1120-x
Lyon P, Strippoli V, Fang B, Cimmino L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020;12:2867. DOI: https://doi.org/10.3390/nu12092867
Main, PA, Angley MT, Thomas P, O’Doherty CE, Fenech M. Folate, and methionine metabolism in autism: A systematic review. Am. J. Clin. Nutr. 2010;91:1598–1620. DOI: https://doi.org/10.3945/ajcn.2009.29002
Maximo JO, Kadena EJ, Kana RK. The Implications of Brain Connectivity in the Neuropsychology of Autism. 2014;24:16–31. DOI: https://doi.org/10.1007/s11065-014-9250-0
Mohammad NS, Jain JMN, Chintakindi KP, Singh RP, Naik U, e al. Aberrations in folate metabolic pathway and altered susceptibility to autism. 2009 Aug;19(4):171-6. doi: 10.1097/YPG.0b013e32832cebd2. DOI: https://doi.org/10.1097/YPG.0b013e32832cebd2
O’Leary F, Samman S. Vitamin B12 in Health, and Disease. Nutrients 2010;2:299–316. DOI: https://doi.org/10.3390/nu2030299
Ozonoff S, Hung K, Byrd R, Hansen R, Hertz-Piccioto I. The onset of autism: patterns of symptom emergence in the first years of life. 30 December 2008. https://doi.org/10.1002/aur.53 DOI: https://doi.org/10.1002/aur.53
Parra M, Stahl S, Hellmann H. Vitamin B6 and Its Role in Cell Metabolism and Physiology. Cells 2018;7:84. DOI: https://doi.org/10.3390/cells7070084
Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of 10.1002/aur.1300. Epub 2013 May 7.
Raghavan R, Riley AW, Volk H, Caruso D, Hironaka L, et al. Maternal Multivitamin Intake, Plasma Folate and Vitamin B12 Levels and Autism Spectrum Disorder Risk in Offspring. 018 Jan;32(1):100-111. doi: 10.1111/ppe.12414. DOI: https://doi.org/10.1111/ppe.12414
Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. 2016 Aug;31(4):727-35. doi: 10.1007/s11011-016-9815-0. DOI: https://doi.org/10.1007/s11011-016-9815-0
Rawat S, Nagpal J, Jain, T. Role of Vitamin B12 in Autistic Spectrum and Attention Deficit Hyperactivity Disorders: A Scoping Review. Indian J. Nutr. 2021;8:243.
Robea MA, Luca AC, Ciobica A. Relationship between Vitamin Deficiencies and Co- Occurring Symptoms in Autism Spectrum Disorder. Medicina 2020;56:245. DOI: https://doi.org/10.3390/medicina56050245
Ronald A, Hoekstra RA. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):255-274. DOI: https://doi.org/10.1002/ajmg.b.31159
Rosenberg N, Murata M, Ikeda Y et al. The frequent 5,10-methylenetetrahydrofolate reductase C677T polymorphism is associated with a common haplotype in whites, Japanese, and Africans. 2002 Mar;70(3):758-62. doi: 10.1086/338932. DOI: https://doi.org/10.1086/338932
Roth C, Magnus P, Schjølberg S. Stoltenberg C, Súren P, et al. Folic acid supplements in pregnancy and severe language delay in children. 2011 Oct 12;306(14):1566-73. doi: 10.1001/jama.2011.1433. DOI: https://doi.org/10.1001/jama.2011.1433
Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). E K. Schattauer Verlasssesellschaft mbH (Stuttgart) 1997;78(I):523-526. DOI: https://doi.org/10.1055/s-0038-1657581
Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt C, et al. Prenatal vitamins, one- carbon metabolism gene variants, and risk for autism. 2011 Jul; 22(4):476–485. doi: 10.1097/EDE.0b013e31821d0e30. DOI: https://doi.org/10.1097/EDE.0b013e31821d0e30
Schmidt R, Iosif AM, Angel EG, Ozonoff S. Association of Maternal Prenatal Vitamin Use with Risk for Autism Spectrum Disorder Recurrence in Young Siblings. 2019 Apr 1;76(4):391-398. doi: 10.1001/jamapsychiatry.2018.3901. DOI: https://doi.org/10.1001/jamapsychiatry.2018.3901
Sener EF, Oztop DB, Ozkul Y. MTHFR Gene C677T Polymorphism in Autism Spectrum Disorders. 014; 2014: 698574. doi: 10.1155/2014/698574. DOI: https://doi.org/10.1155/2014/698574
Shawky RM, El-Baz F, Kamal TM, Elhossiny RM, Ahmed MA, et al. Study of genotype– phenotype correlation of methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in a sample of Egyptian autistic children. October 2014;35-341. DOI: https://doi.org/10.1016/j.ejmhg.2014.05.004
Stevenson RE, Schwartz CE, Du YZ, Adams Jr MJ. Differences in methylenetetrahydrofolate reductase genotype frequencies, between Whites and Blacks. 1997 Jan;60(1):229-30.
Súren P, Roth C, Bresnahan M, Haugen M, Hornig M, et al. Association between maternal use of folic acid supplements and risk of autism in children. 2013 Feb 13; 309(6):570–577. doi: 10.1001/jama.2012.155925. DOI: https://doi.org/10.1001/jama.2012.155925
Tu WJ, Chen H, He J. Application of LC-MS/MS analysis of plasma amino acids profiles in children with autism. 2012 Nov;51(3):248-9. doi: 10.3164/jcbn.12-45. Epub 2012 Jul 30. DOI: https://doi.org/10.3164/jcbn.12-45
Yadav P, Kumar R, Kumar N, Singh M, Kant R, et al. Effect of Vitamin B6, B9, and B12 Supplementation on Homocysteine Level and Cardiovascular Outcomes in Stroke Patients: A Meta-Analysis of Randomized Controlled Trials. 021 May; 13(5):e14958. doi: 10.7759/cureus.14958. DOI: https://doi.org/10.7759/cureus.14958
Yanamandra K, Bocchini Jr JA, Thurmon TF. Absence of association of fetal MTHFR C677T polymorphism with prenatal Down syndrome pregnancies. 2003 Jan;11(1):5. doi: 10.1038/sj.ejhg.5200928. DOI: https://doi.org/10.1038/sj.ejhg.5200928
Yektas C, Alpay M, Tufan AE. Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. 2019;15:2213–2219. doi: 10.2147/NDT.S212361. DOI: https://doi.org/10.2147/NDT.S212361
Zhong C, Tessing J, Lee BK, Lyall K. Maternal Dietary Factors, and the Risk of Spectrum Disorders: A Systematic Review of Existing Evidence. 2020 https://doi.org/10.1002/aur.2402 DOI: https://doi.org/10.1002/aur.2402
Downloads
Publicado
Como Citar
Licença
Direitos de Autor (c) 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.