INTERAÇÃO DO INFLAMASSOMA COM AS DOENÇAS RESPIRATÓRIAS
DOI:
https://doi.org/10.47820/recima21.v4i1.2632Palavras-chave:
Inflamassoma., Asma., DPOC., Câncer de pulmão., Tuberculose., Covid-19.Resumo
Introdução: O inflamassoma é um complexo multiproteico formado no citosol que apresenta como função gerar as formas ativas das citocinas IL-1β e IL-18 que irão promover a resposta inflamatória no indivíduo. A ativação do inflamassoma tem como consequência a piroptose, uma forma inflamatória de morte celular programada de macrófagos caracterizada pelo inchaço das células, perda da integridade da membrana plasmática e liberação de citocinas pró-inflamatórias (IL-1β, IL-18, TNF-α, IL-6 e IL-8). Assim, a participação do inflamassoma está confirmada na patogênese de várias doenças inflamatórias, cuja atuação é moldada pelo tipo de ativação e assim criando um perfil patogênico diferente para cada doença. Objetivo: Dessa forma, este estudo buscou abordar a relação da ativação do inflamassoma na patogênese das doenças do trato respiratório. Metodologia: Trata-se de uma revisão de literatura realizada a partir da análise de periódicos provenientes da plataforma acadêmica: Center for Biotechnology Information (PubMed). A pesquisa foi delimitada em um intervalo de 2001 a 2021, usando as palavras-chaves: Inflamassoma; Asma; DPOC; Infecção trato inferior; Câncer de pulmão; Tuberculose; COVID-19. Desenvolvimento: Os resultados obtidos nos estudos demonstraram que há uma influência do inflamassoma nas patogêneses do trato respiratório. Conclusão: Com base nas informações obtidas, foi possível observar a importância do inflamassoma no desenvolvimento da patogênese de algumas doenças do trato respiratório como a asma, doença pulmonar obstrutiva crônica (DPOC), infecções agudas do trato respiratório inferior, câncer de pulmão, tuberculose e COVID-19.
Downloads
Referências
Amin, S., Aktar, S., Rahman, M. M., & Chowdhury, M. M. H. (2022). NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes and infection, 24(1), 104913. https://doi.org/10.1016/j.micinf.2021.104913
Bade, B. C., & Dela Cruz, C. S. (2020). Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clinics in chest medicine, 41(1), 1–24. https://doi.org/10.1016/j.ccm.2019.10.001
Barbosa, M. T., Morais-Almeida, M., Sousa, C. S., & Bousquet, J. (2021). The "Big Five" Lung Diseases in CoViD-19 Pandemic - a Google Trends analysis. Pulmonology, 27(1), 71–72. https:// doi.org/10.1016/j.pulmoe.2020.06.008
Behar, S. M., Carpenter, S. M., Booty, M. G., Barber, D. L., & Jayaraman, P. (2014). Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Seminars in immunology, 26(6), 559–577. https://doi.org/10.1016/j.smim.2014.09.003
Chang, A. B., Chang, C. C., O'Grady, K., & Torzillo, P. J. (2009). Lower respiratory tract infections. Pediatric clinics of North America, 56(6), 1303–1321. https://doi.org/10.1016/j.pcl.2009.09.003
Chen, I. Y., Moriyama, M., Chang, M. F., & Ichinohe, T. (2019). Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Frontiers in microbiology, 10, 50. https://doi.org/10.3389/fmicb.2019.00050
Cheng, L., Alexander, R. E., Maclennan, G. T., Cummings, O. W., Montironi, R., Lopez-Beltran, A., Cramer, H. M., Davidson, D. D., & Zhang, S. (2012). Molecular pathology of lung cancer: key to personalized medicine. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 25(3), 347–369. https://doi.org/10.1038/modpathol.2011.215
Donovan, C., Liu, G., Shen, S., Marshall, J. E., Kim, R. Y., Alemao, C. A., Budden, K. F., Choi, J. P., Kohonen-Corish, M., El-Omar, E. M., Yang, I. A., & Hansbro, P. M. (2020). The role of the microbiome and the NLRP3 inflammasome in the gut and lung. Journal of leukocyte biology, 108(3), 925–935. https://doi.org/10.1002/JLB.3MR0720-472RR
Earn, D., Dushoff, J., & Levin, S. (2002). Ecology and evolution of the flu. Trends in Ecology and Evolution, 17, 334–340. https://davidearn.mcmaster.ca/publications/EarnEtAl2002
Feldman, C., & Shaddock, E. (2019). Epidemiology of lower respiratory tract infections in adults. E x p e r t r e v i e w o f r e s p i r a t o r y m e d i c i n e, 1 3 (1) , 6 3 – 7 7 . https://doi.org/ 10.1080/17476348.2019.1555040
Figueira, M. B. de A. (2019). Avaliação de polimorfismos de base única (SNP) em genes do inflamassoma e componentes relacionados em pacientes com tuberculose. Tede.ufam.edu.br. https://tede.ufam.edu.br/handle/tede/7637
Filho, E. B. da S., Silva, A. L., Santos, A. O., Dall’acqua, D. S. V., & Souza, L. F. B. (2017). Infecções Respiratórias de Importância Clínica: uma Revisão Sistemática: RESPIRATORY INFECTIONS OF CLINICAL IMPORTANCE: A SYSTEMATIC REVIEW. REVISTA FIMCA, 4(1), 7-16. https://doi.org/10.37157/fimca.v4i1.5
Franchi, L., Eigenbrod, T., Muñoz-Planillo, R., & Nuñez, G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature immunology, 10(3), 241–247. https://doi.org/10.1038/ni.1703
Freeman, T. L., & Swartz, T. H. (2020). Targeting the NLRP3 Inflammasome in Severe COVID-19. Frontiers in immunology, 11, 1518. https://doi.org/10.3389/fimmu.2020.01518
Furin, J., Cox, H., & Pai, M. (2019). Tuberculosis. Lancet (London, England), 393(10181), 1642– 1656. https://doi.org/10.1016/S0140-6736(19)30308-3
Gans, M. D., & Gavrilova, T. (2020). Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatric respiratory reviews, 36, 118–127. https://doi.org/10.1016/j.prrv.2019.08.002
Gereige, R. S., & Laufer, P. M. (2013). Pneumonia. Pediatrics in review, 34(10), 438–456. https:// doi.org/10.1542/pir.34-10-438
Hamid, Q., & Tulic, M. (2009). Immunobiology of asthma. Annual review of physiology, 71, 489– 507. https://doi.org/10.1146/annurev.physiol.010908.163200
Hogg, J. C., & Timens, W. (2009). The pathology of chronic obstructive pulmonary disease. Annual review of pathology, 4, 435–459. https://doi.org/10.1146/annurev.pathol.4.110807.092145
Hosseinian, Nima; CHO, Young; LOCKEY, Richard F.; KOLLIPUTI, Narasaiah. The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances In Respiratory Disease, [S.L.], v. 9, n. 4, p. 188-197, 26 maio 2015. SAGE Publications. http://dx.doi.org/ 10.1177/1753465815586335.
Hui, D. S. C., & Zumla, A. (2019). Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infectious disease clinics of North America, 33(4), 869–889. https://doi.org/ 10.1016/j.idc.2019.07.001
Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature reviews. Molecular cell biology, 23(1), 3–20. https://doi.org/10.1038/ s41580-021-00418-x
Khan MK, Islam MN, Ferdous J, Alam MM. An Overview on Epidemiology of Tuberculosis. Mymensingh Medical Journal : MMJ. 2019 Jan;28(1):259-266. PMID: 30755580.
Kips J. C. (2001). Cytokines in asthma. The European respiratory journal. Supplement, 34, 24s– 33s. https://doi.org/10.1183/09031936.01.00229601
LEE, Tae-Hyeong; SONG, Hyun Ji; PARK, Choon-Sik. Role of inflammasome activation in development and exacerbation of asthma. Asia Pacific Allergy, [S.L.], v. 4, n. 4, p. 187, 2014. Asia Pacific Association of Allergy, Asthma, and Clinical Immunology. http://dx.doi.org/10.5415/ apallergy.2014.4.4.187
Liang, M., Chen, X., Wang, L., Qin, L., Wang, H., Sun, Z., Zhao, W., & Geng, B. (2020). Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. Journal of experimental & clinical cancer research : CR, 39(1), 176. https://doi.org/10.1186/s13046-020-01688-7
Lima, D. S. (2019). Caracterização genética e funcional do inflamassoma na resposta à micobactéria e no desenvolvimento de diferentes formas clínicas de tuberculose pulmonar. Tese de Doutorado, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo. DOI: 10.11606/T.42.2019.tde-13122019-173816. Recuperado em 2023-01-05, de www.teses.usp.br
Loftus, P. A., & Wise, S. K. (2016). Epidemiology of asthma. Current opinion in otolaryngology & head and neck surgery, 24(3), 245–249. https://doi.org/10.1097/MOO.0000000000000262
MacNee W. (2005). Pathogenesis of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2(4), 258–291. https://doi.org/10.1513/pats.200504-045SR
Mason R. J. (2020). Pathogenesis of COVID-19 from a cell biology perspective. The European respiratory journal, 55(4), 2000607. https://doi.org/10.1183/13993003.00607-2020
Markelić, I., Hlapčić, I., Čeri, A., Radić Antolic, M., Samaržija, M., Popović-Grle, S., Vukić Dugac, A., & Rumora, L. (2022). Activation of NLRP3 inflammasome in stable chronic obstructive pulmonary disease. Scientific reports, 12(1), 7544. https://doi.org/10.1038/s41598-022-11164-1
Mims J. W. (2015). Asthma: definitions and pathophysiology. International forum of allergy & rhinology, 5 Suppl 1, S2–S6. https://doi.org/10.1002/alr.21609
Mizgerd J. P. (2008). Acute lower respiratory tract infection. The New England journal of medicine, 358(7), 716–727. https://doi.org/10.1056/NEJMra074111
Mohamadian, M., Chiti, H., Shoghli, A., Biglari, S., Parsamanesh, N., & Esmaeilzadeh, A. (2021). COVID-19: Virology, biology and novel laboratory diagnosis. The journal of gene medicine, 23(2), e3303. https://doi.org/10.1002/jgm.3303
Pellegrini, C., Antonioli, L., Lopez-Castejon, G., Blandizzi, C., & Fornai, M. (2017). Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Frontiers in immunology, 8, 36. https://doi.org/10.3389/fimmu.2017.00036
Rabe, K. F., Hurd, S., Anzueto, A., Barnes, P. J., Buist, S. A., Calverley, P., Fukuchi, Y., Jenkins, C., Rodriguez-Roisin, R., van Weel, C., Zielinski, J., & Global Initiative for Chronic Obstructive Lung Disease (2007). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American journal of respiratory and critical care medicine, 176(6), 532–555. https://doi.org/10.1164/rccm.200703-456SO
Sefik, E., Qu, R., Junqueira, C., Kaffe, E., Mirza, H., Zhao, J., Brewer, J. R., Han, A., Steach, H. R., Israelow, B., Blackburn, H. N., Velazquez, S. E., Chen, Y. G., Halene, S., Iwasaki, A., Meffre, E., Nussenzweig, M., Lieberman, J., Wilen, C. B., Kluger, Y., … Flavell, R. A. (2022). Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature, 606(7914), 585–593. https://doi.org/10.1038/s41586-022-04802-1
Seyed Hosseini, E., Riahi Kashani, N., Nikzad, H., Azadbakht, J., Hassani Bafrani, H., & Haddad Kashani, H. (2020). The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology, 551, 1–9. https://doi.org/10.1016/ j. virol.2020.08.011
Sharma, A., Ahmad Farouk, I., & Lal, S. K. (2021). COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses, 13(2), 202. https://doi.org/10.3390/v13020202
Silva, Denise Rossato, Mello, Fernanda Carvalho de Queiroz e Migliori, Giovanni Battista. Tuberculosis series 2020. Jornal Brasileiro de Pneumologia [online]. 2020, v. 46, n. 02. [Acessado 5 Janeiro 2023], e20200027. Disponível em: <https://doi.org/10.36416/1806-3756/e20200027>. Epub 2 Mar 2020. ISSN 1806-3756. https://doi.org/10.36416/1806-3756/e20200027.
Singh, S. P., Pritam, M., Pandey, B., & Yadav, T. P. (2021). Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. Journal of medical virology, 93(1), 275–299. https://doi.org/10.1002/jmv.26254
Smith, C. J., Perfetti, T. A., Rumple, M. A., Rodgman, A., & Doolittle, D. J. (2001). "IARC Group 2B carcinogens" reported in cigarette mainstream smoke. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 39(2), 183–205. https://doi.org/10.1016/s0278-6915(00)00164-2
Spitz, M. R., Wei, Q., Dong, Q., Amos, C. I., & Wu, X. (2003). Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 12(8), 689–698.
Stern, J., Pier, J., & Litonjua, A. A. (2020). Asthma epidemiology and risk factors. Seminars in immunopathology, 42(1), 5–15. https://doi.org/10.1007/s00281-020-00785-1
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
Swanson, K. V., Deng, M., & Ting, J. P. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature reviews. Immunology, 19(8), 477–489. https://doi.org/10.1038/s41577-019-0165-0
Teuwen, L.-A., Geldhof, V., Pasut, A., & Carmeliet, P. (2020). COVID-19: the vasculature unleashed. Nature Reviews Immunology. https://doi.org/10.1038/s41577-020-0343-0
Theofani, E., Semitekolou, M., Morianos, I., Samitas, K., & Xanthou, G. (2019). Targeting NLRP3 Inflammasome Activation in Severe Asthma. Journal of clinical medicine, 8(10), 1615. https://doi.org/10.3390/jcm8101615
Thomas M, Bomar PA. Upper Respiratory Tract Infection. [Updated 2022 Jun 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532961/
Travis WD. Patologia do Câncer de Pulmão: Conceitos Atuais. Clínicas em Medicina Torácica. 2020 mar;41(1):67-85. DOI: 10.1016/j.ccm.2019.11.001.
GBD 2017 Influenza Collaborators (2019). Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. The Lancet. Respiratory medicine, 7(1), 69–89. https://doi.org/10.1016/S2213- 2600(18)30496-X
Tuder, R. M., & Petrache, I. (2012). Pathogenesis of chronic obstructive pulmonary disease. The Journal of Clinical Investigation, 122(11), 4300. https://doi.org/10.1172/JCI66725
National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. (2014). The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. In PubMed. Centers for Disease Control and Prevention (US). https://pubmed.ncbi.nlm.nih.gov/24455788/
Wang, Z., Zhang, S., Xiao, Y., Zhang, W., Wu, S., Qin, T., Yue, Y., Qian, W., & Li, L. (2020). NLRP3 Inflammasome and Inflammatory Diseases. Oxidative medicine and cellular longevity, 2020, 4063562. https://doi.org/10.1155/2020/4063562
Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID19): A Review. JAMA, 324(8), 782–793. https://doi.org/10.1001/jama.2020.12839
Williams, E. J., Negewo, N. A., & Baines, K. J. (2021). Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. The Journal of allergy and clinical immunology, 147(6), 2060–2062. https://doi.org/10.1016/j.jaci.2021.04.022
Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and Multiorgan Response. Current problems in cardiology, 45(8), 100618. https://doi.org/10.1016/j.cpcardiol.2020.100618
Zhao, N., Di, B., & Xu, L. L. (2021). The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine & growth factor reviews, 61, 2–15. https://doi.org/10.1016/j.cytogfr.2021.06.002
Zhang, J., Xu, Q., Sun, W., Zhou, X., Fu, D., & Mao, L. (2021). New Insights into the Role of NLRP3 Inflammasome in Pathogenesis and Treatment of Chronic Obstructive Pulmonary Disease. Journal of inflammation research, 14, 4155–4168. https://doi.org/10.2147/JIR.S324323
Zheng M. (2016). Classification and Pathology of Lung Cancer. Surgical oncology clinics of North America, 25(3), 447–468. https://doi.org/10.1016/j.soc.2016.02.003
Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses - drug discovery and therapeutic options. Nature reviews. Drug discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37
Downloads
Publicado
Edição
Seção
Categorias
Licença
Copyright (c) 2023 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.