OAK CERTIFICATION IN THE STORAGE OF DISTILLED BEVERAGES

Authors

DOI:

https://doi.org/10.47820/recima21.v3i2.1189

Keywords:

Distilled beverages, Oak, Aging Certification, Cachaça

Abstract

The storage in wooden containers integrates the process of production of distilled beverages, characterizing the stage of maturation or aging. The cachaça – legally defined as distilled sugar cane drink produced in Brazil – is stored in barrels of several native woods, as well as in European and American oak barrels (Quercus). Given the diversity of wood employed, it is important to have chemical parameters to attest to the identity of each wood, whose extracted components are recognized as bioactive. However, Brazilian legislation defines aging only through physical parameters related to container geometry and storage time. In this work, analyzing whiskeys and cachaças aged in oak, it is demonstrated that, despite the diversity of origins, the identity of the oak is well characterized in the chromatographic profiles, with consistent predominance of the alagic and lalic acids and syllaldehyde. It is concluded that it is possible to attest to the use of oak in the aging of distilled beverages, regardless of the diversity of treatments to which the wood may have been submitted. The possibility/relevance of extending the methodology (HPLC-UV) is pointed out for the purpose of characterizing native Brazilian woods used in the aging of cachaça. This is an important advance for the purpose of certifying the identity of cachaça and valuing the native Brazilian flora.  

Downloads

Download data is not yet available.

Author Biographies

  • Amazile Biagioni Maia

    LABM - Laboratório Amazile Biagioni Maia - Belo Horizonte, MG, Brasil

  • Lorena Simão Marinho

    LABM - Laboratório Amazile Biagioni Maia

  • Frederico Marx Brom Carneiro

    LABM - Laboratório Amazile Biagioni Maia - Belo Horizonte, MG, Brasil

  • Lucas Oliveira Tonidandel

    LABM - Laboratório Amazile Biagioni Maia - Belo Horizonte, MG, Brasil

References

• ABRAHAM, K; GURTLER, R; BERG, K; HEINEMEYER, G; LAMPEN,A ; APPEL, KE (2011). Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Mol. Nut. Food Res., 55: 667-678. DOI: 10.1002/MNFR.201000564

• AQUINO, FWB (2004). Determinação de compostos fenólicos em extratos de Amburana cearensis (Fr. All.) A.C. Smith e em aguardentes de cana envelhecidas do Ceará. (Dis. mestr.) Fortaleza, UFC, Depto. Tecnologia de Alimentos. http://www.repositorio.ufc.br/handle/riufc/17464

• CABRITA, MJ; DIAS, CB; FREITAS, AMC. (2011) Phenolic acids, phenolic aldehydes and furanic derivatives in oak chips: american vs french oaks. S. Afr. J. Enol. Vitic.32(2): 204-210.

• CADERMATORI, PHG; MISSIO, AL; MATTOS, BD & GATTO, DA (2015). Effect of thermal treatments on technological properties of wood from two Eucalypitus species. Abb. Braz. Acad. Sci, 87(1):471-81. http://dx.doi.org/10.1590/0001-376520130121

• CASTRO, MC; BORTOLETTO, AM; SILVELLO, GC & ALCARDE, AR (2020). Compostos fenólicos derivados de lignina em cachaça envelhecida em barricas novas de duas espécies de carvalho. Heliyon, 6(11). DOI:10.1016/j.heliyon.2020.e05586

• CERNISEV, S (2016). Analysis of lignin-derived phenolic compounds and their transformations in aged wine distillates. Food Control, 73, 281–290. DOI:10.1016/j.foodcont.2016.08.01

• CETERA, P, D’AURIA, M, MECCA, M & TODARO, L (2018). Gallic acid as main product in the water extractives of Quercus frainetto Nat. Prod. Res. 1- 4.

DOI:10.1080/14786419.2018.1503266

• COLDEA, TE; MUDURA ,E & SOCACIU,C (2017). Advances in distilled beverages authenticy and quality testing. http://dx.ooi.org/10.5772/intechopen.72041

• ESEYIN, AE & STEELE, PH (2015). An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 3(2): 42. DOI:10.14419/ijac.v3i2.5048

• ESTEVES, B & PEREIRA, H (2009). Wood modification by heat treatment: a review, BioRes, 4(1): 370-404

• JOHANSSON, D (2008). Heat treatment of solid wood: effects on absorption, strength and colour. Lulea (Sweden) Lulea Tekniska Universitet (thesis doct). ID: 2d9465e0-abea-11dd-a7c5-000ea68e967b

• KIOKIAS, S; PROESTOS, C & OREOPOULOU, V (2020). Phenolic acids of plant origin - A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods, 9(4): 534. DOI: 10.3390/foods9040534

• KOBUM,R. (2020). Advanced Food Analysis Tools: biosensors and nanotechnology. New York, Academic Press. 444 p.

• KORKUT, D; KORKUT, S; BEKAR, I; BUDAKCI, M; DILIK, T & CAKICIER, N. (2008). The effects of heat treatment on the physical properties and surface roughness of turkish hazel (Corylus colurna L.) Wood. Intern. J. Mol. Sci., 9(9): 1772–1783. DOI:10.3390/ijms9091772

• KUCEROVÁ, V, LAGANA, R, VYBOHOVÁ, E, & HYROSOVÁ, T (2016). The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. BioResources, 11(4). DOI:10.15376/biores.11.4.9079-9094

• LAMOUNIER, KC; CUNHA, LCS, MORAIS, SAL., AQUINO, FJT, CHANG, R; NASCIMENTO, EA & CUNHA, WR (2012). Chemical analysis and study of phenolics, antioxidant activity, and antibacterial effect of the wood and bark ofmaclura tinctoria (l.) D. Don ex steud. Evidence-based complementary and alternative medicine, 1–7. DOI:10.1155/2012/451039.

• MAIA, AB.; MARINHO, LS & NELSON, DL (2021). Certification of amburana in the aging of cachaça. (2020). Res. Soc. Develop., 9 (12). DOI:10.33448/rsd-v9i12.10644

• MAIA, AB (2021). Papel da madeira no envelhecimento da cachaça. RECIMA21, 2(8). DOI: org/10.47820/recima21.v2i8.682.

• MAPA (2021). Portaria 339/21 de 28/06/2021. Estabelece os Padrões de Identidade e Qualidade da aguardente de cana e da Cachaça e revoga atos normativos com matérias pertinentes.

• MIRANDA, I, SOUSA, V, FERREIRA, J, & PEREIRA, H (2017). Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea., PLoS One, 12(6). DOI:10.1371/journal.pone.0179268.

• PEÑARRIETA, M; MOLLINEDO,P; ROSSEL, EA; VILA, JL & BRAVO, JA (2013). Gallic acid and its derivatives: occurrence and identification in high altitude edible and medicinal plants. In: THOMPSON, MA & COLLINS, PB. Handbook on gallic acid: natural occurrences, antioxidant properties and health implications. Nova Publishers.

• PERCIN, O; PEKER, H & ATILGAN, A (2016). The effect of heat treatment on some physical and mechanical properties of beech wood. Wood Res., 61(3): 443-456.

• PIGGOTT, JR; CONNER, JM & PATERSON, A. (1995). Flavour development in whisky maturation. Develop. Food Sci., 1731–1751. DOI:10.1016/s0167-4501(06)80261-x .

• QUEIMADA, AJ; MOTA, FL; PINHO, SP & MACEDO, EA. (2009). Solubilities of Biologically Active Phenolic Compounds: Measurements and Modeling. J. Phys. Chem. B, 113(11): 3469–3476. DOI:10.1021/jp808683y.

• SIMÓN, BF; MUIÑO, I & CADAHÍA, E (2010). Characterization of volatile constituents in commercial oak wood chips. J. Agric. Food Chem., 58: 9587–9596.

• TSHABALALA, MA, SWEENY, JD, & ROWELL, RM (2012) Heat treatment of wet wood fiber: A study of the effect of reaction conditions on the formation of furfurals. Wood Mat. Sci. Eng., 7(4): 202–208. DOI:10.1080/17480272.2012.669406.

• WIŚNIEWSKA, P; DYMERSKI, T; WARDENCKI, W& NAMIEŚNIK, J. (2014). Chemical composition analysis and authentication of whisky. J. Sci. Food Agric., 95(11): 2159–2166. DOI:10.1002/jsfa.6960.

• ZHANG, B; CAI, J; DUAN, CQ.; REEVES, M., & HE, F. (2015). A Review of polyphenolics in oak woods. Int. J. Mol. Sci.; 16 (12): 6978–7014. DOI: 10.3390 / ijms16046978.

Published

14/02/2022

How to Cite

OAK CERTIFICATION IN THE STORAGE OF DISTILLED BEVERAGES. (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(2), e321189. https://doi.org/10.47820/recima21.v3i2.1189