INCREMENTAL AND ITERATIVE METHODS WITH FOURTH ORDER OF CONVERGENCE FOR THE NONLINEAR ANALYSIS OF RETICULATE STRUCTURES

Authors

DOI:

https://doi.org/10.47820/recima21.v3i4.1283

Keywords:

Nonlinear Analysis, Three-step method, Finite elements

Abstract

The nonlinear behavior of a structure can be described by its equilibrium path in displacement versus load space, which is obtained iteratively by solving a series of linear problems. The nonlinear solution is obtained iteratively by solving a series of linear problems. Currently, analysis procedures have attracted much attention due to computational efficiency, analysis cost, feasibility and applicability. In this context, this paper proposes two incremental and iterative procedures with fourth order of convergence, in order to find the approximate solution of the system of nonlinear equations that describes the structural problem. Static analyzes of two problems with geometric nonlinear behavior – a beam and a column – are performed with the free program Scilab. The structures are discretized with the Corrotational formulation of the Finite Element Method. Connections are simulated using a null-length connection element. Equilibrium paths are obtained using the Linear Arc-Length path-following technique. The computational efficiency of the implemented methods is compared with the standard Newton-Raphson incremental procedure. As a conclusion, one of the proposed algorithms was able to obtain the approximate solution of the problems with fewer accumulated iterations and shorter processing time.

Downloads

Download data is not yet available.

Author Biography

  • Luiz Antonio Farani de Souza

    Universidade Tecnológica Federal do Paraná

    Curso de Engenharia Civil

    Área: estruturas

References

CHEN, W. F.; GOTO, Y.; LIEW, J. R. Stability design of semi-rigid frames. New York, USA: John Wiley & Sons, 1996.

CRISFIELD M. A. Non-linear Finite Element Analysis of Solids and Structures. Vol 1. Chichester, England: John Wiley & Sons Ltda, 1991.

DEL SAVIO, A. A.; ANDRADE, S. A. L.; MARTHA, L. F.; SILVA VELLASCO, P. C. G. Um sistema não-linear para análise de pórticos planos semi-rígidos. Revista Sul-Americana de Engenharia Estrutural, Passo Fundo, v. 2, n. 1, p. 97-125, 2005.

HERCEG, D.; HERCEG, D. Some fourth-order methods for nonlinear equations. Novi Sad J. Math, v. 37, n. 2, p. 241-247, 2007.

MAHDAVI, S. H.; RAZAK, H. A.; SHOJAEE, S.; MAHDAVI, M. S. A comparative study on application of Chebyshev and spline methods for geometrically non-linear analysis of truss structures. International Journal of Mechanical Sciences, v. 101, p. 241-251, 2015.

MARTHA, L. F. Ftool – Two-Dimensional Frame Analysis Tool. Versão 4.00.04. Tecgraf/PUC-Rio, 2018.

MAXIMIANO, D. P.; SILVA, A. R. D.; SILVEIRA, R. A. M. Iterative strategies associated with the normal flow technique on the nonlinear analysis of structural arches. Revista Escola de Minas (Impresso), v. 67, n. 2, p. 143-150, 2014.

RAMM, E. Strategies for tracing the nonlinear response near limit points. In: Nonlinear finite element analysis in structural mechanics. Springer, Berlin, Heidelberg, 1981. p. 63-89.

RODRIGUES, P. F. N.; VARELA, W. D.; SOUZA, R. A. Análise de Estratégias de Solução do Problema Não-linear. Revista de Ciência & Tecnologia, v. 8, n. 2, p. 36-49, 2008.

SAFFARI, H.; MANSOURI, I. Non-linear analysis of structures using two-point method. International Journal of Non-Linear Mechanics, v. 46, n. 6, p. 834-840, 2011.

SCILAB, versão 6.1.1. France: ESI Group, 2021.

SEGUNDO, J. S. R.; SILVEIRA, R. A. M.; SILVA, A. R. D.; BARROS, R. C. Combinando as técnicas de busca linear com continuação para a solução de problemas estruturais não lineares. In: XL IBERO-LATIN AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING, 11-14 novembro, 2019, Natal, Brasil. Anais... Natal: XL CILAMCE, 2019.

SOUZA, L. A. F. D.; CASTELANI, E. V.; SHIRABAYASHI, W. V. I.; ALIANO, A.; MACHADO, R. D. Trusses nonlinear problems solution with numerical methods of cubic convergence order. TEMA (São Carlos), v. 19, p. 161-179, 2018.

SOUZA, L. A. F.; CASTELANI, E. V.; SHIRABAYASHI, W. V. I. Adaptation of the Newton-Raphson and Potra-Pták methods for the solution of nonlinear systems. Semina: Ciências Exatas e Tecnológicas, v. 42, n. 1, p. 63-74, 2021.

SOUZA, L. A. F. D.; SANTOS, D. F. D.; KAWAMOTO, R. Y. M.; VANALLI, L. New fourth-order convergent algorithm for analysis of trusses with material and geometric nonlinearities. The Journal of Strain Analysis for Engineering Design, p. 03093247211000528, 2021.

TANG, Y. Q.; ZHOU, Z. H.; CHAN, S. L. Nonlinear beam-column element under consistent deformation. International Journal of Structural Stability and Dynamics, v. 15, n. 05, p. 1450068, 2015.

VAN HAI, N.; NGHIEM, D. N. T.; CUONG, N. H. Large displacement elastic analysis of planar steel frames with flexible beam-to-column connections under static loads by corotational beam-column element. Journal of Science and Technology in Civil Engineering (STCE)-NUCE, v. 13, n. 3, p. 85-94, 2019.

YAW, L. L. 2D Co-rotational Truss Formulation. Walla Walla University, 2009.

Published

11/04/2022

How to Cite

INCREMENTAL AND ITERATIVE METHODS WITH FOURTH ORDER OF CONVERGENCE FOR THE NONLINEAR ANALYSIS OF RETICULATE STRUCTURES. (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(4), e341283. https://doi.org/10.47820/recima21.v3i4.1283