USING NEURAL NETWORKS TO VISUALIZE AND INTERPRET ELECTRONENCEPHALOGRAM AND ELECTROOCULOGRAM DATA

Authors

DOI:

https://doi.org/10.47820/recima21.v3i6.1578

Keywords:

Brain-machine interfaces aim to integrate

Abstract

Brain-machine interfaces aim to integrate humans with machines in a more direct and intimate way. This work aims to demonstrate that the reading of brain waves is possible through communication between the Python language and the hardware responsible for obtaining the data. The project addresses the hardware of the relevant brain computer interfaces, giving the reader a high level understanding of what the technology is and how it works, as well as citing applications, and then turns its attention to the software side, demonstrating how we can apply this knowledge with the support of technologies such as Google Collab for the project hosting, the MNE-Python library for reliable readings Scikit-learn to perform machine learning computations, and other tools.

Downloads

Download data is not yet available.

Author Biographies

  • Matheus de Souza Perches

    Universidade de Araraquara - UNIARA

  • João Henrique Gião Borges, Uniara

    Universidade de Araraquara - UNIARA

  • Fabiana Florian

    Universidade de Araraquara - UNIARA

References

Hassanien, A.; AZAR, A.; Brain-Computer Interfaces: Current Trends and Applications, Springer International Publishing. 2014. Disponível em: https://link.springer.com/book/10.1007/978-3-319-10978-7?utm_medium=referral&utm_source=google_books&utm_campaign=3_pier05_buy_print&utm_content=en_08082017 Acesso em: 31 de maio de 2022.

GRAIMANN, B.; ALLISON, B.; PFURTSCHELLER, G.; Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction, Springer Berlin Heidelberg, 2010. Disponível em: https://link.springer.com/book/10.1007/978-3-642-02091-9?utm_medium=referral&utm_source=google_books&utm_campaign=3_pier05_buy_print&utm_content=en_08082017 Acesso em: 31 de maio de 2022.

LEITE, S.; Contribuições ao Desenvolvimento de Interfaces Cérebro-Computador Baseadas em Potenciais Evocados Visualmente em Regime Estacionário, Tese de Doutorado, UNICAMP, 2016. Disponível em: http://repositorio.unicamp.br/acervo/detalhe/970748?guid=1654047707563&returnUrl=%2fresultado%2flistar%3fguid%3d1654047707563%26quantidadePaginas%3d1%26codigoRegistro%3d970748%23970748&i=4 Acesso em: 31 de maio de 2022

RAO, R.; Brain-Computer Interfacing: An Introduction, Cambridge University Press, 2013. Disponível em: https://www.cambridge.org/br/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/brain-computer-interfacing-introduction?format=HB&isbn=9780521769419 Acesso em: 31 de maio de 2022.

WOLPAW, E.; WOLPAW, J.; Brain-Computer Interfaces: Principles and Practice, Oxford University Press, USA, 2012. Disponível em: https://global.oup.com/academic/product/brain-computer-interfaces-9780195388855?cc=br&lang=en& Acesso em: 31 de maio de 2022.

GIUSEPPE, C.; CIRAC, I.; CRANMER, K.; DAUDET, L.; SCHULD, M.; TISHBY, N.; VOGTMARANTO, L.; ZDEBOROVÁ, L.; Machine learning and the physical sciences, American Physical Society, 2019 Disponível em: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.045002 Acesso em: 31 de maio de 2022.

DINTEREN, R.; ARNS, M.; JONGSMA, M.; KESSELS, R.; P300 Development across the Lifespan: A Systematic Review and Meta-Analysis, National Library of Medicine, USA, 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923761/ Acesso em: 31 de maio de 2022.

Interpretador de P300, com o código fonte com autoria de Brandon Siebert disponível em: http://learn.neurotechedu.com/machinelearning/ e https://colab.research.google.com/drive/1ZQt8RCkkmTEYXRDmFbj1kpcXpUXD2Da0 Acesso em: 26 de maio de 2022.

Published

10/06/2022

How to Cite

USING NEURAL NETWORKS TO VISUALIZE AND INTERPRET ELECTRONENCEPHALOGRAM AND ELECTROOCULOGRAM DATA. (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(6), e361578. https://doi.org/10.47820/recima21.v3i6.1578