FIELD THEORY AND ARTIFICIAL INTELLIGENCE INTEGRATED IN THE ANALYSIS OF TRANSITIONS BETWEEN MATHEMATICAL INTERFACES

Authors

DOI:

https://doi.org/10.47820/recima21.v4i3.2932

Keywords:

Quantization of Learning, Decision Tree, Mathematical-Computational Modeling

Abstract

Mathematics is a human creation. Therefore, humanity has the responsibility to disseminate the contentment and relevance of this invention, in order to make students believe that Mathematics is accessible and feasible to be learned. This work has as its primary purpose, recognizing the boundaries between the fields of Mathematics, treated in elementary school, considering three Interfaces: Arithmetic, Algebra and Geometry. The research benefited from the Theory of Fields and the Artificial Intelligence strategy to analyze and interpret the results obtained with the intervention of Experimental Activities in the Mathematics teaching-learning process. The investigation was carried out at Usina da Paz da Cabanagem, in the City of Belém in the State of Pará, involving students from the 5th to the 9th grade, from five public schools. The methodology applies the Mathematical-Computational resolution of Field Theory equations in Decision Trees. The results indicate which is the main Interface for each teaching period, identifying the borders of transition between these Interfaces.

Downloads

Download data is not yet available.

Author Biographies

  • Denis Carlos Lima Costa, Secretary of State for Education - SEDUC Pará

    Develops research in the field of Computational Mathematics applied to the improvement of Artificial Intelligence. PhD in Electrical Engineering in the field of Power Systems. Master in Geophysics. Specialization in Physics. Graduated in Science and Mathematics. Leader of the Research Group MATHEMATICAL MODELING GRADIENT  AND COMPUTATIONAL SIMULATION - GM²SC, linked to the Federal Institute of Education, Science and Technology of Pará - IFPA Campus Ananindeua. Member of the LANGUAGES, CULTURES, TECHNOLOGIES and INCLUSION Research Group - LICTI, linked to the Federal Institute of Education, Science and Technology of Pará - IFPA Campus Castanhal, where he collaborates with the lines of Mathematics Education and Computational Mathematics

  • Dener Francisco Ferreira da Silva

    Secretaria de Estado de Ciência, Tecnologia e Educação Profissional e Tecnológica - SECTET Pará.

  • Fabrícia Ribeiro, Cabanagem Peace Factoy - Pará

    Usina da Paz Cabanagem - Pará.

  • Renata Pinheiro Chaves

    Usina da Paz Cabanagem - Pará.

  • Heictor Alves de Oliveira Costa, Federal University of Pará - UFPA/ITEC

    Universidade Federal do Pará - UFPA/ITEC.

References

ALMEIDA, F. E. L. O Contrato Didático na Passagem da Linguagem Natural para Linguagem Algébrica e na Resolução da Equação na 7ª Série do ensino Fundamental. Dissertação Mestrado, UFRPE, Recife, 2009.

BROUSSEAU, Guy. Theory of Didactical Situations in Mathematics. eBook ISBN: 0-306-47211-2. Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow. 2002.

COSTA, Denis C. L.; COSTA, Heictor A. de O.; NEVES, Lucas P. Métodos Matemáticos Aplicados nas Engenharias via Sistemas Computacionais. SINEPEM-IFPA. 2019.

COSTA, Heictor A. de O.; COSTA, Denis C. L.; FRANCÊS, Carlos R.; GOMES, Larissa L.; ROCHA, E. M.; ANDRADE, S. H. Fractional Order Differential Calculus Applied on Decision Making System to Smart Grid Management via Decision Trees. Research, Society and Development, [S. l.], v. 10, n. 16, p. e38101623387. DOI: 10.33448/rsd-v10i16.23387. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23387. 2021a.

COSTA, Denis C. L.; COSTA, Heictor A. de O.; Silva, Hugo C. M. da; SILVA, Silvio T. T. da. Matemática Computacional Aplicada à Ciência e Tecnologia. Belém, PA, SINEPEM-IFPA. 2021b.

COSTA, Denis C. L.; COSTA, Heictor A. de O.; MENESES, Lair A. de; LIMA, Mara L. V. de; REIS, A. C. F.; PINHEIRO, H. F. B.; COSTA, E. F. da; SILVA, A. R. dos S. da; REIS, A. C. F.; RAIOL, F. M.; SANTOS, R. C. P. dos. Thermoelectric generation with reduced pollutants made possible by bio-inspired computing. Research, Society and Development, [S. l.], v. 11, n. 1, p. e7611124568. DOI: 10.33448/rsd-v11i1.24568. Disponível em: https: //rsdjournal.org/index.php/rsd/article/view/24568. 2022.

COSTA, Denis C. L.; ROSÁRIO, Danileno M. do; SUZUKI, Júlio C. Ensino-Aprendizagem em Ciências, Matemática e Tecnologia - São Paulo: FFLCH/USP. Raízes da Educação, v.3. ISBN 978-85-7506-411-5. DOI 10.11606/9788575064115. Disponível em: https://www.livrosabertos.sibi.usp.br/portaldelivrosUSP/catalog/view/865/780/2863. 2022.

FOSSA, John A. Algumas Considerações Teóricas sobre o Ensino de Matemática por Atividades. REMATEC: Revista de Matemática, Ensino e Cultura, Ano 15, Número 35, p.10-26 ISSN: 2675-1909. DOI: http://dx.doi.org/10.37084/REMATEC.1980-3141.2020.n15.p10-26.id283. 2020.

GNU OCTAVE. High-level language, primarily intended for numerical computations. https://octave.org/. 2023.

LIANG, HongJing; LIU, JinSheng; WANG, Rong; SONG, YaQin; ZHOU, YuanYuan. Application Research of Field Theory in the Problem of Colleges and Universities Innovation Team Aggregation. Hindawi. Mathematical Problems in Engineering. https://doi.org/10.1155/2020/5376184. 2020.

MAFRA, José R. e S.; SÁ, Pedro F. de; Uma Perspectiva Teórica Para o Ensino de Matemática por Atividades Experimentais. Revista Exitus, Santarém/PA, Vol. 13, p. 01 – 21. DOI: 10.24065/2237-9460.2023v13n1ID1981. ISSN 2237-9460. 2023.

MARTIN, John L. What Is Field Theory? American Journal of Sociology, Vol. 109, No. 1, pp. 1-49 Published by: The University of Chicago Press. http://www.jstor.org/stable/10.1086/375201. 2003.

PIMENTEL, D. E. Metodologia da resolução de problemas no planejamento de atividades para a transição da aritmética para a álgebra. 133 f. Dissertação – Universidade Federal de São Carlos, São Paulo, 2010.

RAPIDMINER. Data Science Platform. https://rapidminer.com/. 2023.

SÁ, Pedro F. de. Possibilidades do Ensino de Matemática por Atividades. Simpósio Nacional sobre o Ensino e Pesquisa de Matemática no Contexto da Educação, Ciência e Tecnologia - SINEPEM. ISBN 978-85-62855-97-9 (V. 7), ISBN 978-85-62855-87-0 (Coleção). Belém – Pa. 2019.

SEAC. Secretaria de Estratégia e Articulação da Cidadania. Usinas da Paz. http://www.seac.pa.gov.br/content/usinas-da-paz. 2022.

SEDUC. Secretaria de Estado de Educação. https://www.seduc.pa.gov.br/. 2023.

WAGNER, Joseph F. Students’ Obstacles to Using Riemann Sum Interpretations of the Definite Integral. Int. J. Res. Undergrad. Math. Ed. 4, 327–356. https://doi.org/10.1007/s40753-017-0060-7. 2018.

Published

24/03/2023

How to Cite

FIELD THEORY AND ARTIFICIAL INTELLIGENCE INTEGRATED IN THE ANALYSIS OF TRANSITIONS BETWEEN MATHEMATICAL INTERFACES. (2023). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 4(3), e432932. https://doi.org/10.47820/recima21.v4i3.2932