ESOPHAGEAL CANCER AND OBESITY AS A RISK FACTOR

Authors

  • Clara e Silva Modesto
  • Nicolas Adriano Faria Sanches
  • Claudio Cesar Vilela Staut Filho
  • Gabriel Teixeira Cardoso

DOI:

https://doi.org/10.47820/recima21.v6i3.6280

Keywords:

Esophageal cancer. Obesity. Esophageal adenocarcinoma. Endoscopy. Gastroesophageal reflux. Barrett’s esophagus.

Abstract

Esophageal cancer is the seventh most common cancer worldwide and shows high mortality rates, particularly when diagnosed at an advanced stage. In Brazil, a significant increase in mortality rates and the number of endoscopies for early diagnosis has been observed. Obesity, also on the rise in the country, is a major risk factor for esophageal adenocarcinoma, especially due to its association with gastroesophageal reflux and Barrett’s esophagus. This integrative systematic review aims to analyze the relationship between obesity and esophageal cancer, based on 43 relevant studies from PubMed, Scielo, and Science Direct. The results show that obesity significantly increases the risk of esophageal cancer by promoting a chronic inflammatory environment and insulin resistance. Although obesity is a critical risk factor, the “obesity paradox” suggests that obese patients diagnosed with esophageal cancer may have better survival rates.

Downloads

Download data is not yet available.

Author Biographies

  • Clara e Silva Modesto

    UNIFENAS - Universidade José do Rosário Vellano - MG.

  • Nicolas Adriano Faria Sanches

    Universidade Professor Edson Antônio Velano.

  • Claudio Cesar Vilela Staut Filho

    UNIFENAS - Universidade José do Rosário Vellano - MG.

  • Gabriel Teixeira Cardoso

    UNIFENAS - Universidade José do Rosário Vellano - MG.

References

ABDELRAHIM, Mohamed et al. Development and validation of artificial neural networks model for detection of Barrett’s neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointestinal Endoscopy, v. 97, n. 3, p. 422-434, 2023. DOI: https://doi.org/10.1016/j.gie.2022.10.031

CHEN, Pei-Chin et al. The accuracy of artificial intelligence in the endoscopic diagnosis of early gastric cancer: pooled analysis study. Journal of Medical Internet Research, v. 24, n. 5, p. e27694, 2022. DOI: https://doi.org/10.2196/27694

FERRY, C.; NEWMAN, S. P. Obesity and Its Impact on Esophageal Cancer Survival: A Prospective Study. The American Journal of Gastroenterology, v. 116, n. 10, p. 2104-2112, 2021.

FIGUEIREDO, Thais Gabriella Pereira; DA SILVA BOMFIM, Natália. A obesidade como o fator de risco para o câncer. [S. l.: s. n,], 2021.

HASHIMOTO, Rintaro et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointestinal Endoscopy, v. 91, n. 6, p. 1264-1271.e1, 2020. DOI: https://doi.org/10.1016/j.gie.2019.12.049

KUBO, A.; CORLEY, D. A. Body mass index and adenocarcinoma of the esophagus or gastric cardia: A systematic review and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, v. 15, n. 5, p. 872-878, 2006. DOI: 10.1158/1055-9965.EPI-05-0860. DOI: https://doi.org/10.1158/1055-9965.EPI-05-0860

LAGERGREN, J.; LAGERGREN, P. Obesity and Gastrosophageal Reflux Disease: Association with Esophageal Adenocarcinoma. Gastroenterology, v. 154, n. 2, p. 261-267, 2018. DOI: 10.1053/j.gastro.2017.07.042. DOI: https://doi.org/10.1053/j.gastro.2017.07.046

LAYKE, J. C.; LOPEZ, P. P. Esophageal Cancer: A Review and Update. American Family Physician, v. 73, n. 12, p. 2187-2194, 2006.

LI, Jia et al. A deep learning and natural language processing-based system for automatic identification and surveillance of high-risk patients undergoing upper endoscopy: a multicenter study. EClinicalMedicine, v. 53, 2022. DOI: https://doi.org/10.1016/j.eclinm.2022.101704

LUO, Huiyan et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. The Lancet Oncology, v. 20, n. 12, p. 1645-1654, 2019. DOI: https://doi.org/10.1016/S1470-2045(19)30637-0

MAO, Y.; YANG, J.; SU, J. Obesity and Risk for Esophageal Adenocarcinoma and Barrett's Esophagus: A Systematic Review and Meta-Analysis. Cancer Epidemiology, v. 47, p. 1-17, 2017. DOI: 10.1016/j.canep.2017.01.009. DOI: https://doi.org/10.1016/j.canep.2017.01.009

NAMIKAWA, Ken et al. Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers: comparison between the original and newly developed systems. Endoscopy, v. 52, n. 12, p. 1077-1083, 2020. DOI: https://doi.org/10.1055/a-1194-8771

QUEIROZ, Eveline Aparecida Isquierdo Fonseca et al. Obesidade e câncer: mecanismos envolvidos e intervenções terapêuticas. Scientific Electronic Archives, v. 15, n. 3, 2022. DOI: https://doi.org/10.36560/15320221522

RYAN, A. M.; HEALY, L. A.; POWER, D. G. Obesity, Metabolic Syndrome, and Esophageal Adenocarcinoma: Epidemiology and Pathogenesis. Journal of Gastrointestinal Surgery, v. 23, n. 8, p. 1594-1602, 2019. DOI: 10.1007/511605-019-04161-w.

TANI, Yasuhiro et al. A single-center prospective study evaluating the usefulness of artificial intelligence for the diagnosis of esophageal squamous cell carcinoma in a real-time setting. BMC Gastroenterology, v. 23, n. 1, p. 184, 2023. DOI: https://doi.org/10.1186/s12876-023-02788-2

THRIFT, A. P.; WHITEMAN, D. C. The Association Between Obesity and Esophageal Cancer: A Meta-Analysis of Observational Studies. Cancer Epidemiology, Biomarkers & Prevention, v. 25, n. 8, p. 1029-1037, 2016. DOI: 10.1158/1055-9965.EPI-15-1157.

WANG, Liang et al. Utilization of ultrasonic image characteristics combined with endoscopic detection on the basis of artificial intelligence algorithm in diagnosis of early upper gastrointestinal cancer. Journal of Healthcare Engineering, v. 2021, n. 1, p. 2773022, 2021. DOI: https://doi.org/10.1155/2021/2773022

WORLD HEALTH ORGANIZATION. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 2000.

YE, Xiao Hua; ZHAO, Lin Lin; WANG, Lei. Diagnostic accuracy of endoscopic ultrasound with artificial intelligence for gastrointestinal stromal tumors: A meta‐analysis. Journal of Digestive Diseases, v. 23, n. 5-6, p. 253-261, 2022. DOI: https://doi.org/10.1111/1751-2980.13110

ZHANG, Xu et al. Real-time gastric polyp detection using convolutional neural networks. PloS One, v. 14, n. 3, p. e0214133, 2019. DOI: https://doi.org/10.1371/journal.pone.0214133

Published

14/03/2025

How to Cite

ESOPHAGEAL CANCER AND OBESITY AS A RISK FACTOR. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(3), e636280. https://doi.org/10.47820/recima21.v6i3.6280