CÂNCER ESOFÁGICO E OBESIDADE COMO UM FATOR DE RISCO
DOI:
https://doi.org/10.47820/recima21.v6i3.6280Palavras-chave:
Câncer esofágico, Endoscopia, Obesidade, Refluxo gastroesofágicoResumo
O câncer esofágico é o sétimo câncer mais comum no mundo e apresenta altas taxas de mortalidade, especialmente quando diagnosticado tardiamente. No Brasil, observa-se um aumento significativo nas taxas de mortalidade e na realização de endoscopias para o diagnóstico precoce. A obesidade, que também está em crescimento no país, é um importante fator de risco para o adenocarcinoma esofágico, principalmente devido à sua relação com o refluxo gastroesofágico e o Esôfago de Barrett. Esta revisão sistemática integrativa tem como objetivo analisar a associação entre obesidade e câncer esofágico, utilizando 43 estudos relevantes encontrados nas bases de dados PubMed, Scielo e Science Direct. Os resultados apontam que a obesidade aumenta significativamente o risco de câncer esofágico, ao promover um ambiente inflamatório crônico e resistência à insulina. Apesar de a obesidade ser um fator de risco importante, o fenômeno do “paradoxo da obesidade” sugere que pacientes obesos diagnosticados com câncer esofágico podem ter melhores taxas de sobrevida.
Downloads
Referências
ABDELRAHIM, Mohamed et al. Development and validation of artificial neural networks model for detection of Barrett’s neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointestinal Endoscopy, v. 97, n. 3, p. 422-434, 2023. DOI: https://doi.org/10.1016/j.gie.2022.10.031
CHEN, Pei-Chin et al. The accuracy of artificial intelligence in the endoscopic diagnosis of early gastric cancer: pooled analysis study. Journal of Medical Internet Research, v. 24, n. 5, p. e27694, 2022. DOI: https://doi.org/10.2196/27694
FERRY, C.; NEWMAN, S. P. Obesity and Its Impact on Esophageal Cancer Survival: A Prospective Study. The American Journal of Gastroenterology, v. 116, n. 10, p. 2104-2112, 2021.
FIGUEIREDO, Thais Gabriella Pereira; DA SILVA BOMFIM, Natália. A obesidade como o fator de risco para o câncer. [S. l.: s. n,], 2021.
HASHIMOTO, Rintaro et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointestinal Endoscopy, v. 91, n. 6, p. 1264-1271.e1, 2020. DOI: https://doi.org/10.1016/j.gie.2019.12.049
KUBO, A.; CORLEY, D. A. Body mass index and adenocarcinoma of the esophagus or gastric cardia: A systematic review and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, v. 15, n. 5, p. 872-878, 2006. DOI: 10.1158/1055-9965.EPI-05-0860. DOI: https://doi.org/10.1158/1055-9965.EPI-05-0860
LAGERGREN, J.; LAGERGREN, P. Obesity and Gastrosophageal Reflux Disease: Association with Esophageal Adenocarcinoma. Gastroenterology, v. 154, n. 2, p. 261-267, 2018. DOI: 10.1053/j.gastro.2017.07.042. DOI: https://doi.org/10.1053/j.gastro.2017.07.046
LAYKE, J. C.; LOPEZ, P. P. Esophageal Cancer: A Review and Update. American Family Physician, v. 73, n. 12, p. 2187-2194, 2006.
LI, Jia et al. A deep learning and natural language processing-based system for automatic identification and surveillance of high-risk patients undergoing upper endoscopy: a multicenter study. EClinicalMedicine, v. 53, 2022. DOI: https://doi.org/10.1016/j.eclinm.2022.101704
LUO, Huiyan et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. The Lancet Oncology, v. 20, n. 12, p. 1645-1654, 2019. DOI: https://doi.org/10.1016/S1470-2045(19)30637-0
MAO, Y.; YANG, J.; SU, J. Obesity and Risk for Esophageal Adenocarcinoma and Barrett's Esophagus: A Systematic Review and Meta-Analysis. Cancer Epidemiology, v. 47, p. 1-17, 2017. DOI: 10.1016/j.canep.2017.01.009. DOI: https://doi.org/10.1016/j.canep.2017.01.009
NAMIKAWA, Ken et al. Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers: comparison between the original and newly developed systems. Endoscopy, v. 52, n. 12, p. 1077-1083, 2020. DOI: https://doi.org/10.1055/a-1194-8771
QUEIROZ, Eveline Aparecida Isquierdo Fonseca et al. Obesidade e câncer: mecanismos envolvidos e intervenções terapêuticas. Scientific Electronic Archives, v. 15, n. 3, 2022. DOI: https://doi.org/10.36560/15320221522
RYAN, A. M.; HEALY, L. A.; POWER, D. G. Obesity, Metabolic Syndrome, and Esophageal Adenocarcinoma: Epidemiology and Pathogenesis. Journal of Gastrointestinal Surgery, v. 23, n. 8, p. 1594-1602, 2019. DOI: 10.1007/511605-019-04161-w.
TANI, Yasuhiro et al. A single-center prospective study evaluating the usefulness of artificial intelligence for the diagnosis of esophageal squamous cell carcinoma in a real-time setting. BMC Gastroenterology, v. 23, n. 1, p. 184, 2023. DOI: https://doi.org/10.1186/s12876-023-02788-2
THRIFT, A. P.; WHITEMAN, D. C. The Association Between Obesity and Esophageal Cancer: A Meta-Analysis of Observational Studies. Cancer Epidemiology, Biomarkers & Prevention, v. 25, n. 8, p. 1029-1037, 2016. DOI: 10.1158/1055-9965.EPI-15-1157.
WANG, Liang et al. Utilization of ultrasonic image characteristics combined with endoscopic detection on the basis of artificial intelligence algorithm in diagnosis of early upper gastrointestinal cancer. Journal of Healthcare Engineering, v. 2021, n. 1, p. 2773022, 2021. DOI: https://doi.org/10.1155/2021/2773022
WORLD HEALTH ORGANIZATION. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 2000.
YE, Xiao Hua; ZHAO, Lin Lin; WANG, Lei. Diagnostic accuracy of endoscopic ultrasound with artificial intelligence for gastrointestinal stromal tumors: A meta‐analysis. Journal of Digestive Diseases, v. 23, n. 5-6, p. 253-261, 2022. DOI: https://doi.org/10.1111/1751-2980.13110
ZHANG, Xu et al. Real-time gastric polyp detection using convolutional neural networks. PloS One, v. 14, n. 3, p. e0214133, 2019. DOI: https://doi.org/10.1371/journal.pone.0214133
Downloads
Publicado
Licença
Direitos de Autor (c) 2025 RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.