CÁNCER DE ESÓFAGO Y OBESIDAD COMO FACTOR DE RIESGO
DOI:
https://doi.org/10.47820/recima21.v6i3.6280Palabras clave:
Câncer esofágico. Obesidade. Adenocarcinoma esofágico. Endoscopia. Refluxo gastroesofágico. Esôfago de Barrett.Resumen
El cáncer de esófago es el séptimo cáncer más común en el mundo y presenta altas tasas de mortalidad, especialmente cuando se diagnostica tardíamente. En Brasil, se observa un aumento significativo en las tasas de mortalidad y en la realización de endoscopias para el diagnóstico precoz. La obesidad, que también está en aumento en el país, es un factor de riesgo importante para el adenocarcinoma esofágico, principalmente debido a su relación con el reflujo gastroesofágico y el esófago de Barrett. Esta revisión sistemática integrativa tiene como objetivo analizar la asociación entre obesidad y cáncer de esófago, utilizando 43 estudios relevantes encontrados en las bases de datos PubMed, Scielo y Science Direct. Los resultados indican que la obesidad aumenta significativamente el riesgo de cáncer de esófago, al promover un entorno inflamatorio crónico y resistencia a la insulina. A pesar de que la obesidad es un factor de riesgo importante, el fenómeno del "paradoja de la obesidad" sugiere que los pacientes obesos diagnosticados con cáncer de esófago pueden tener mejores tasas de supervivencia.
Descargas
Referencias
ABDELRAHIM, Mohamed et al. Development and validation of artificial neural networks model for detection of Barrett’s neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointestinal Endoscopy, v. 97, n. 3, p. 422-434, 2023. DOI: https://doi.org/10.1016/j.gie.2022.10.031
CHEN, Pei-Chin et al. The accuracy of artificial intelligence in the endoscopic diagnosis of early gastric cancer: pooled analysis study. Journal of Medical Internet Research, v. 24, n. 5, p. e27694, 2022. DOI: https://doi.org/10.2196/27694
FERRY, C.; NEWMAN, S. P. Obesity and Its Impact on Esophageal Cancer Survival: A Prospective Study. The American Journal of Gastroenterology, v. 116, n. 10, p. 2104-2112, 2021.
FIGUEIREDO, Thais Gabriella Pereira; DA SILVA BOMFIM, Natália. A obesidade como o fator de risco para o câncer. [S. l.: s. n,], 2021.
HASHIMOTO, Rintaro et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointestinal Endoscopy, v. 91, n. 6, p. 1264-1271.e1, 2020. DOI: https://doi.org/10.1016/j.gie.2019.12.049
KUBO, A.; CORLEY, D. A. Body mass index and adenocarcinoma of the esophagus or gastric cardia: A systematic review and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, v. 15, n. 5, p. 872-878, 2006. DOI: 10.1158/1055-9965.EPI-05-0860. DOI: https://doi.org/10.1158/1055-9965.EPI-05-0860
LAGERGREN, J.; LAGERGREN, P. Obesity and Gastrosophageal Reflux Disease: Association with Esophageal Adenocarcinoma. Gastroenterology, v. 154, n. 2, p. 261-267, 2018. DOI: 10.1053/j.gastro.2017.07.042. DOI: https://doi.org/10.1053/j.gastro.2017.07.046
LAYKE, J. C.; LOPEZ, P. P. Esophageal Cancer: A Review and Update. American Family Physician, v. 73, n. 12, p. 2187-2194, 2006.
LI, Jia et al. A deep learning and natural language processing-based system for automatic identification and surveillance of high-risk patients undergoing upper endoscopy: a multicenter study. EClinicalMedicine, v. 53, 2022. DOI: https://doi.org/10.1016/j.eclinm.2022.101704
LUO, Huiyan et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. The Lancet Oncology, v. 20, n. 12, p. 1645-1654, 2019. DOI: https://doi.org/10.1016/S1470-2045(19)30637-0
MAO, Y.; YANG, J.; SU, J. Obesity and Risk for Esophageal Adenocarcinoma and Barrett's Esophagus: A Systematic Review and Meta-Analysis. Cancer Epidemiology, v. 47, p. 1-17, 2017. DOI: 10.1016/j.canep.2017.01.009. DOI: https://doi.org/10.1016/j.canep.2017.01.009
NAMIKAWA, Ken et al. Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers: comparison between the original and newly developed systems. Endoscopy, v. 52, n. 12, p. 1077-1083, 2020. DOI: https://doi.org/10.1055/a-1194-8771
QUEIROZ, Eveline Aparecida Isquierdo Fonseca et al. Obesidade e câncer: mecanismos envolvidos e intervenções terapêuticas. Scientific Electronic Archives, v. 15, n. 3, 2022. DOI: https://doi.org/10.36560/15320221522
RYAN, A. M.; HEALY, L. A.; POWER, D. G. Obesity, Metabolic Syndrome, and Esophageal Adenocarcinoma: Epidemiology and Pathogenesis. Journal of Gastrointestinal Surgery, v. 23, n. 8, p. 1594-1602, 2019. DOI: 10.1007/511605-019-04161-w.
TANI, Yasuhiro et al. A single-center prospective study evaluating the usefulness of artificial intelligence for the diagnosis of esophageal squamous cell carcinoma in a real-time setting. BMC Gastroenterology, v. 23, n. 1, p. 184, 2023. DOI: https://doi.org/10.1186/s12876-023-02788-2
THRIFT, A. P.; WHITEMAN, D. C. The Association Between Obesity and Esophageal Cancer: A Meta-Analysis of Observational Studies. Cancer Epidemiology, Biomarkers & Prevention, v. 25, n. 8, p. 1029-1037, 2016. DOI: 10.1158/1055-9965.EPI-15-1157.
WANG, Liang et al. Utilization of ultrasonic image characteristics combined with endoscopic detection on the basis of artificial intelligence algorithm in diagnosis of early upper gastrointestinal cancer. Journal of Healthcare Engineering, v. 2021, n. 1, p. 2773022, 2021. DOI: https://doi.org/10.1155/2021/2773022
WORLD HEALTH ORGANIZATION. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 2000.
YE, Xiao Hua; ZHAO, Lin Lin; WANG, Lei. Diagnostic accuracy of endoscopic ultrasound with artificial intelligence for gastrointestinal stromal tumors: A meta‐analysis. Journal of Digestive Diseases, v. 23, n. 5-6, p. 253-261, 2022. DOI: https://doi.org/10.1111/1751-2980.13110
ZHANG, Xu et al. Real-time gastric polyp detection using convolutional neural networks. PloS One, v. 14, n. 3, p. e0214133, 2019. DOI: https://doi.org/10.1371/journal.pone.0214133
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.