GENOMIC EDITING: NEW HOPE IN THE TREATMENT OF SICKLE CELL DISEASE?
DOI:
https://doi.org/10.47820/recima21.v5i6.5328Keywords:
Anemia; , Edition, SicklingAbstract
Sickle cell disease (SCD) is a group of hereditary hemoglobinopathies characterized by mutations that affect the β-globin chain of hemoglobin. Objective: to group what already exists in the literature on the use of the CRISPR-Cas9 system in the treatment of sickle cell disease. Materials and methods: This is an integrative review, in which the guiding question was “Is the CRISPR-Cas9 system capable of treating sickle cell disease?”. The search for articles was carried out in PubMed using the terms “CRISPR-cas9”, “sickle cell”, “anemia” combined with Boolean operators. Results and Discussion: Correction of the disease causing the sickle cell mutation using gene editing represents the most direct therapeutic approach. The β-globin-targeted pre-complexed CRISPR gRNA/Cas9 ribonucleoprotein complex along with the DNA donor template are delivered into hematopoietic stem cells and autologous progenitors isolated from patients with sickle cell disease, resulting in repair mediated by homology-directed repair of the causative mutation. CRISPR-Cas9-mediated genetic modification has demonstrated variable efficiency, specificity, and persistence in hematopoietic stem cells. Conclusion: The recent discovery of CRISPR/Cas9 not only revolutionized genome engineering, but also brought the possibility of translating these concepts into a clinically meaningful reality.
Downloads
References
BRANDOW, A. M.; LIEM, R. I. Advances in the diagnosis and treatment of sickle cell disease. Journal of Hematology & Oncology, v. 15, n. 1, p. 1-13, 2022. DOI: https://doi.org/10.1186/s13045-022-01237-z
CRONIN, M. A.; GEORGE, E. The why and how of the integrative review. Organizational Research Methods, e.1094428120935507, 2020. DOI: https://doi.org/10.1177/1094428120935507
DAGDAS, Y. S.; CHEN, J. S.; STERNBERG, S. H.; DOUDNA, J. A.; YILDIZ, A. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci Adv., 3, eaao0027, 2017. DOI: https://doi.org/10.1126/sciadv.aao0027
DE SOUSA, L. M. M.; MARQUES-VIEIRA, C. M. A.; SEVERINO, S. S. P.; ANTUNES, A. V. A metodologia de revisão integrativa da literatura em enfermagem. Portal de Revistas de Enfermagem, n. 21, Série 2, nov. 2017.
DEMIRCI, S.; UCHIDA, N.; TISDALE, J. F. Gene therapy for sickle cell disease: An update. Cytotherapy, v. 20, n. 7, p. 899-910, jul; 2018. doi: 10.1016/j.jcyt.2018.04.003. DOI: https://doi.org/10.1016/j.jcyt.2018.04.003
MA, L.; YANG, S.; PENG, Q.; ZHANG, J.; ZHANG, J. CRISPR/Cas9-based gene-editing technology for sickle cell disease. Gene, v. 12, p. 874:147480, may 2023. doi: 10.1016/j.gene.2023.147480. DOI: https://doi.org/10.1016/j.gene.2023.147480
NEUMAYR, L. D.; HOPPE, C. C.; BROWN, C. Sickle cell disease: current treatment and emerging therapies. Am J Manag Care, v. 25, 18 Suppl, p. S335-43, 2019.
OSUNKWO, I.; ANDEMARIAM, B.; MINNITI, C. P.; INUSA, B. P.; EL RASSI, F.; FRANCIS‐GIBSON, B.; JAMES, J. Impact of sickle cell disease on patientsʼ daily lives, symptoms reported, and disease management strategies: Results from the international Sickle Cell World Assessment Survey (SWAY). American Journal of Hematology, v. 96, n. 4, p. 404-417, 2021. DOI: https://doi.org/10.1002/ajh.26063
PARK, S. H.; BAO, G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfus Apher Sci., v. 60, n. 1, p. 103060, feb. 2021. doi: 10.1016/j.transci.2021.103060.
PARK, S. H.; LEE, C. M.; DEVER, D. P.; DAVIS, T. H.; CAMARENA, J.; SRIFA, W.; ZHANG, Y.; PAIKARI, A.; CHANG, A. K.; PORTEUS, M. H.; SHEEHAN, V. A.; BAO, G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res., v. 47, n. 15, p. 7955-7972, 5 sep. 2019. doi: 10.1093/nar/gkz475. DOI: https://doi.org/10.1093/nar/gkz475
PARK, So Hyun; BAO, G. "CRISPR/Cas9 gene editing for curing sickle cell disease." Transfusion and Apheresis Science, v. 60, n. 1, p. 103060, 2021. DOI: https://doi.org/10.1016/j.transci.2021.103060
PAYNE, A. B.; MEHAL, J. M.; CHAPMAN, C.; HABERLING, D. L.; RICHARDSON, L. C.; BEAN, C. J.; HOOPER, W. C. Mortality trends and causes of death in persons with sickle cell disease in the United States, 1979-2014. Blood, v. 130, p. 865, 2017. DOI: https://doi.org/10.1182/blood.V130.Suppl_1.865.865
RAMADIER, S.; CHALUMEAU, A.; FELIX, T.; OTHMAN, N.; AKNOUN, S.; CASINI, A.; MAULE, G.; MASSON, C.; DE CIAN, A.; FRATI, G.; BRUSSON, M.; CONCORDET, J. P.; CAVAZZANA, M.; CERESETO, A.; EL NEMER, W.; AMENDOLA, M.; WATTELLIER, B.; MENEGHINI, V.; MICCIO, A. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Mol Ther., v. 30, n. 1, p. 145-163, 5 jan. 2021. DOI: https://doi.org/10.1016/j.ymthe.2021.08.019
ROMERO, Z.; LOMOVA, A.; SAID, S.; MIGGELBRINK, A.; KUO, C. Y.; CAMPO-FERNANDEZ, B.; KOHN, D. B. Editing the sickle cell disease mutation in human hematopoietic stem cells: comparison of endonucleases and homologous donor templates. Molecular Therapy, v. 27, n. 8, 1389-1406, 2019. DOI: https://doi.org/10.1016/j.ymthe.2019.05.014
TAKAHASHI, K.; YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, v. 126, n. 4, p. 663–76, 2006. DOI: https://doi.org/10.1016/j.cell.2006.07.024
VAKULSKAS, C. A.; DEVER, D. P.; RETTIG, G. R.; TURK, R.; JACOBI, A. M.; COLLINGWOOD, M. A.; BODE, N. M.; MCNEILL, M. S.; YAN, S.; CAMARENA, J.; LEE, C. M.; PARK, S. H.; WIEBKING, V.; BAK, R. O.; GOMEZ-OSPINA, N.; PAVEL-DINU, M.; SUN, W.; BAO, G.; PORTEUS, M. H.; BEHLKE, M. A. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med., v. 24, n. 8, p. 1216-1224, aug. 2018. doi: 10.1038/s41591-018-0137-0. DOI: https://doi.org/10.1038/s41591-018-0137-0
WU, Y.; ZENG, J.; ROSCOE, B. P.; LIU, P.; YAO, Q.; LAZZAROTTO, C. R.; CLEMENT, K.; COLE, M. A.; LUK, K.; BARICORDI, C.; SHEN, A. H.; REN, C.; ESRICK, E. B.; MANIS, J. P.; DORFMAN, D. M.; WILLIAMS, D. A.; BIFFI, A.; BRUGNARA, C.; BIASCO, L.; BRENDEL, C.; PINELLO, L.; TSAI, S. Q.; WOLFE, S. A.; BAUER, D. E. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med., v. 25, n. 5, p. 776-783, may. 2019. doi: 10.1038/s41591-019-0401-y. DOI: https://doi.org/10.1038/s41591-019-0401-y
Downloads
Published
How to Cite
License
Copyright (c) 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.