EL MODELO DE AVALANCHAS BAJO EL FOCO DE LA TEORÍA DE LA PERCOLACIÓN
DOI:
https://doi.org/10.47820/recima21.v4i11.4430Palabras clave:
Avalancha, Percolación, Percolación homogéneaResumen
Las avalanchas son flujos de sólidos particulados que, cuando se observan grano a grano, pueden considerarse como una red de percolación. Esta hipótesis será considerada con el fin de averiguar si este tratamiento es posible y cuáles son sus ventajas. El trabajo de Hinrichsen muestra que es posible considerar las avalanchas como eventos de percolación, pero no hay una distinción clara sobre qué modelo de percolación describen estos eventos, si son homogéneos o no homogéneos. Este trabajo tiene como objetivo mostrar que estos eventos de aludes pueden clasificarse como un caso de percolación homogénea, ya que, en Hinrichsen, las simulaciones presentan ciertas características de percolación homogénea. Partiendo de la hipótesis de que las avalanchas pueden ser tratadas como una red de percolación, se sacan a la luz datos cualitativos de esta hipótesis, como el comportamiento característico de las avalanchas y la presencia de transición de fase. En cuanto a los aspectos cuantitativos, se muestra el desempeño del modelo a través de la medición y análisis de los eventos simulados. Y, por último, se introduce un modelo de ecuaciones capaz de predecir la probabilidad de que una avalancha se extienda hasta un punto determinado.
Descargas
Citas
BAK, Per; TANG, Chao; WIESENFELD, Kurt. Self-organized criticality: An explanation of the 1/f noise. Physical review letters, v. 59, n. 4, p. 381, 1987.
BERG, van den , J., Kiss, D., Nolin, P. A Percolation process on the binary tree where large finite clusters are frozen.Electronic Communications in Probability, 17, no. 2, 2012.
BETHE, Hans A. Statistical theory of superlattices. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 150, n. 871, p. 552-575, 1935.
BOLLOBÁS B., K. Gundersony, C. Holmgrenz, S. Jansonx, M.Przykucki. Bootstrap percolation on Galton-Watson trees. Electron. J. Probab. 19, 2014.
BRAGA, Gastão A., Francisco F. Araújo Jr., Caracterização da fase desordenada do modelo de Ising d-dimensional via desigualdades de correlações, Revista Matemática Universitária, 2002.
BROADBENT, Simon R.; HAMMERSLEY, John M. Percolation processes: I. Crystals and mazes. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1957. p. 629-641.
BRUSS, F.T., A Note on Extinction Criteria for Bisexual Galton-Watson Processes. Journal of Applied Probability, 1984.
CASTRO, Paulo Alexandre de. Rede complexa e criticalidade auto-organizada: modelos e aplicações. 2007. Tese de Doutorado. Universidade de São Paulo.
CHALUPA, J. , P.L. Leath, and G.R. Reich, Bootstrap percolation on a Bethe latice, J. Phys. C 12, 1979.
CZARNECKI, Andrzej, Vicinity of the percolation threshold the Bethe Lattice, 2010.
DAERR, Adrian; DOUADY, Stéphane. Two types of avalanche behaviour in granular media. Nature, v. 399, n. 6733, p. 241-243, 1999.
DOGRUYOL, Z. , N. Arsu, O. Pekcan, Critical exponents of photoinitiated gelation at different light intensities. Journal of Macromolecular Science, Part B: Physics, 48, 2009.
FEOFILOFF, Paulo; KOHAYAKAWA, Yoshiharu; WAKABAYASHI, Yoshiko. Uma introdução sucinta à teoria dos grafos. 2011.
GRIMMETT, Geoffrey; GRIMMETT, Geoffrey. What is percolation?. Springer Berlin Heidelberg, 1999.
GRIMMETT, Geoffrey R. et al. Inhomogeneous bond percolation on square, triangular and hexagonal lattices. The Annals of Probability, v. 41, n. 4, p. 2990-3025, 2013.
HACCOU, P. Jagers, P., Vatutin, V.A. (eds.). Branching Processes: Variation, Growth and Extinction of Populations. Cambridge University Press, Cambridge, 2005.
HINRICHSEN, Haye et al. Flowing sand—a possible physical realization of Directed Percolation. Journal of Statistical Physics, v. 98, n. 5-6, p. 1149-1168, 2000.
JATENE, Carlos A. S., Percolação Regular em Rede Quadrada com Probabilidade Sub-limitada em Ondas, UFPA, 2007.
LAUMANN, C. R. , S. A. Parameswaran, S. L. Sondhi, Absence of Goldstone bosons on the Bethe lattice. Phys. Rev. B 80, 2009.
LOCATELLI, Gabriel Olívio et al. Predição de Um Modelo de Percolação de Óleo Diesel em Areias da Praia do Porto de Suape–PE, Brasil. Geologia, v. 28, n. 1, 2015.
MAGALHÃES, Marcos Nascimento. Probabilidade e Variáveis Aleatória, São Paulo, IME-USP, 2004.
MAGALHAES, Caio Franca Merelim. Simulação de materiais granulares, Dissertação de mestrado, UFMG,2008.
MANCINI, F. P. , Magnetic properties of a strongly correlated system the Bethe lattice. Statistical Physics: ModernTrends and Applications (Lviv) Conference proceedings, 2010.
MIRANDA, Luciene L. B. , Avalanches e Criticalidade Auto organizada em Pilhas de Areia Estocásticas, Dissertação de Mestrado. Centro Federal de Educação Tecnológica de Minas Gerais - MG, 2012.
NACHMIAS, A. and Yuval Peres. Non-amenable Cayley graphs of high girth have pc < pu and mean-field exponents. Electron. Commun. Probab., 2012.
NAMBA, A. M.; DA SILVA, V. B.; DA SILVA, C. H. T. P. Dinâmica molecular: teoria e aplicações em planejamento de fármacos. Eclética Química, v. 33, n. 4, 2008.
OLIVEIRA, Samuel Rocha de , Guia do professor - Experimento - Avalanches, Ministério da Educação, Unicamp - SP, 2010.
PARTZSCH, L. Kesten, H.: Percolation Theory for Mathematicians. Birkhäuser Verlag, Boston—Basel—Stuttgart 1982. 423 S., s Fr. 68,-. Biometrical Journal, v. 27, n. 8, p. 947-948, 1985.
ROLLA, L. T., Teixeira, A.Q. Last passage percolation in macroscopically Inhomogeneous media. Electronic Communications in Probability, 2008.
SOUZA, Raimundo N. C. de , Ponto crítico da rede de Bethe não homogênea. Dissertação (Mestrado) - Instituto de Ciências Exatas e Naturais da Universidade Federal do Pará. Programa de Pós-Graduação em Matemática e Estatística, Belém, 2014.
SYKES, Mq F.; ESSAM, John W. Exact critical percolation probabilities for site and bond problems in two dimensions. Journal of Mathematical Physics, v. 5, n. 8, p. 1117-1127, 1964.
TAVARES, Heliton Ribeiro et al. Densidade Crítica no Modelo de Percolação em Rede de Bethe Não-Homogênea. TEMA (São Carlos), v. 16, n. 2, p. 173-182, 2015.
VOGEL, E.E. , W. Lebrecht, J.F. Valdés, Bond percolation for homogeneous two-dimensional lattices. Physica A, 389(8):1512-1520, 2010.
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2023 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.