ADVANCES IN BIOTECHNOLOGY FOR CELLULAR AND TISSUE REGENERATION: CHALLENGES AND PERSPECTIVES IN HUMAN DISEASE TREATMENT

Autores

DOI:

https://doi.org/10.47820/recima21.v5i3.4956

Palavras-chave:

Animal Regeneration, Regenerative Medicine, Biotechnology

Resumo

Biotechnology constitutes a realm of inquiry that extends its benefits across diverse domains of knowledge, ranging from agricultural sciences to clinical applications. This field leverages technology to address challenges frequently entailing living organisms. Of current significance is the endeavor to elucidate the process of animal regeneration, particularly within the human species, given its burgeoning potential as an ally in the treatment and cure of various maladies. Recognizing the societal importance of this subject, the present article seeks to expound upon contemporary biotechnological advancements facilitating the exploration of cellular and tissue regeneration for the treatment of human diseases. To this end, a comprehensive review of articles delineating the current landscape was conducted, involving a comparative analysis of regenerative activity across species, with a specific focus on humans. Evidentially, the use of biomaterials in tissue regeneration assumes paramount importance, albeit not without the formidable challenge posed by the inflammatory process. Stem cells, conversely, present themselves as promising entities in the realm of regeneration. However, their interaction within the host organism necessitates further scrutiny to attain a more nuanced understanding. Despite strides made in the field of regenerative medicine, the lack of comprehensive comprehension regarding the properties of biomaterials and their responses within the human body constrains their clinical applicability. Nevertheless, an auspicious future is envisioned, marked by advancements in biomaterials and a heightened understanding of interactions within the human body, thereby fostering the development of more efficacious treatments for a myriad of diseases.

Downloads

Não há dados estatísticos.

Biografia do Autor

Isabele Pagani Pavan

Universidade Federal do Espírito Santo - Aluna de Iniciação Científica - Licenciada em Ciências Biológicas e bacharelanda em Ciências Biológicas

Giulia Maria Giacinti

Universidade Federal do Espírito Santo - UFES.

Flávio dos Santos Alvarenga

Universidade Federal do Espírito Santo - UFES.

Isabelle Mendonça Martins

Universidade Federal do Espírito Santo - UFES.

Camilly Victória Campanharo

Universidade Federal do Espírito Santo - UFES.

Matheus Correia Casotti

Universidade Federal do Espírito Santo - UFES.

Iúri Drumond Louro

Universidade Federal do Espírito Santo - UFES.

Debora Dummer Meira

Universidade Federal do Espírito Santo - UFES.

Referências

BEHESHTIZADEH, N. et al. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomedicine & Pharmacotherapy, v. 153, 2022. DOI: https://doi.org/10.1016/j.biopha.2022.113431

BOILLY, B. et al. Nerve dependence: from regeneration to cancer. Cancer Cell, v. 31, n. 3, p. 342-354, 2017. DOI: https://doi.org/10.1016/j.ccell.2017.02.005

CHEN, C.; POSS, K. D. Regeneration genetics. Annual Review of Genetics, v. 51, p. 63-82, 2017. DOI: https://doi.org/10.1146/annurev-genet-120116-024554

CHEN, H.; AGRAWAL, D. K.; THANKAM, F. G. Biomaterials-driven sterile inflammation. Tissue Engineering Part B: Reviews, v. 28, n. 1, p. 22-34, 2022. DOI: https://doi.org/10.1089/ten.teb.2020.0253

CHEN, J. et al. Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduction and Targeted Therapy, v. 7, n. 1, p. 1-24, 30 nov. 2022. DOI: https://doi.org/10.1038/s41392-022-01233-2

CHIOU, K.; COLLINS, E. M. S. Why we need mechanics to understand animal regeneration. Developmental Biology, v. 433, n. 2, p. 155-165, 2018. DOI: https://doi.org/10.1016/j.ydbio.2017.09.021

CHUONG, C. M.; RANDALL, V. A., WIDELITZ, R. B.; WU, P.; JIANG, T. X. Physiological regeneration of skin appendages and implications for regenerative medicine. Physiology, v. 27, n. 2, p. 61-72, 2012. DOI: https://doi.org/10.1152/physiol.00028.2011

CIGLIOLA, V. et al. Tissue repair brakes: A common paradigm in the biology of regeneration. Stem Cells, v. 38, n. 3, p. 330-339, 2020. DOI: https://doi.org/10.1002/stem.3118

COFFMAN, J. A. Regenerative potential across species: an eco-evo-devo perspective. In: Epigenetics and Regeneration. Academic Press, p.197-214, 2019. DOI: https://doi.org/10.1016/B978-0-12-814879-2.00008-X

CORDUFF, N. Introducing aesthetic regenerative scaffolds: An immunological perspective. Journal of Cosmetic Dermatology, v. 22, p. 8-14, 2023. DOI: https://doi.org/10.1111/jocd.15702

DA SILVA FILHO, L. C. G. et al. Biotecnologia E Regeneração. In: Internacional de Saúde Única (Interface Mundial). Recife, PE: CIDSU, 2022. Ebook.

DAVIES, J. A.; CACHAT, E. Synthetic biology meets tissue engineering. Biochemical Society Transactions, v. 44, n. 3, p. 696-701, 2016. DOI: https://doi.org/10.1042/BST20150289

DE SIO, F.; IMPERADOR, P. Decifrando a regeneração através de animais não-modelos: um século de experimentos em moluscos cefalópodes e uma perspectiva para o futuro. Fronteiras na Biologia Celular e do Desenvolvimento, v. 1072382, 2023.

DEGUCHI, K.; ZAMBAITI, E.; DE COPPI, P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatric Surgery International, v. 39, n. 1, 4 abr. 2023. DOI: https://doi.org/10.1007/s00383-023-05438-6

DHANIA, S. et al. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). International Journal of Biological Macromolecules, v. 208, p. 243-259, 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.030

DILIP KUMAR, Shanmugam et al. Insights of CRISPR-Cas systems in stem cells: progress in regenerative medicine. Molecular Biology Reports, p. 1-17, 2022. DOI: https://doi.org/10.1007/s11033-021-06832-w

EASTERLING, M. R.; ENGBRECHT, K. M.; CRESPI, E. J. Endocrine regulation of regeneration: linking global signals to local processes. General and Comparative Endocrinology, v. 283, p. 113220, 2019. DOI: https://doi.org/10.1016/j.ygcen.2019.113220

ESMAEILI, A. et al. Processing and Post-processing of Fish Skin as A Novel Material in Tissue Engineering. Tissue and Cell, p. 102238, 2023. DOI: https://doi.org/10.1016/j.tice.2023.102238

FADILAH, N. I. M. et al. Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: A critical review. Antioxidants, v. 12, n. 4, p. 787, 2023. DOI: https://doi.org/10.3390/antiox12040787

FARMANI, Ahmad Reza et al. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. Journal of Functional Biomaterials, v. 13, n. 4, p. 162, 2022. DOI: https://doi.org/10.3390/jfb13040162

GALLIOT, B. et al. Trends in tissue repair and regeneration. Development, v. 144, n. 3, p. 357-364, 2017. DOI: https://doi.org/10.1242/dev.144279

GARCÍA-PERDOMO, H. A.; JURADO-PENAGOS, A. Application of regenerative medicine and 3d bioprinting in urology. Actas Urológicas Españolas (English Edition), v. 46, n. 6, p. 323–328, jul. 2022. DOI: https://doi.org/10.1016/j.acuroe.2022.03.006

GEAHCHAN, S.; BAHARLOUEI, P.; RAHMAN, A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Marine Drugs, v. 20, n. 1, p. 61, 2022. DOI: https://doi.org/10.3390/md20010061

GERHARDT, Louisa M. S. et al. Lineage tracing and single-nucleus multiomics reveal novel features of adaptive and maladaptive repair after acute kidney injury. Journal of the American Society of Nephrology, v. 34, n. 4, p. 554-571, 2023. DOI: https://doi.org/10.1681/ASN.0000000000000057

GOUDARZI, R.; DEHPOUR, A. R.; PARTOAZAR, A. Nanomedicine and regenerative medicine approaches in osteoarthritis therapy. Aging Clinical and Experimental Research, 2022. DOI: https://doi.org/10.1007/s40520-022-02199-5

GURLEY, K. A.; ALVARADO, A. S. Stem cells in animal models of regeneration. International Journal of Biomedical and Health Sciences, v. 8, n. 4, 2021.

HADDADI, Mozhdeh; MOUSAVI, Mohammad Javad. Regenerative Medicine: Highlight on the Significance of Therapeutics with Novel Strategies. Int J Adv Biol Biomed Res, v. 8, n. 4, p. 370-387, 2020.

HAGHVERDI, Laleh; LUDWIG, Leif S. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Reports, v. 18, n. 1, p. 13-25, 2023. DOI: https://doi.org/10.1016/j.stemcr.2022.12.003

HÄNEKE, T.; SAHARA, M. Progress in Bioengineering Strategies for Heart Regenerative Medicine. International Journal of Molecular Sciences, v. 23, n. 7, p. 3482, 2022. DOI: https://doi.org/10.3390/ijms23073482

HENKE, K. et al. Peixe-zebra geneticamente modificado como modelos de desenvolvimento e regeneração esquelética. Osso, v. 167, p. 116611, 2023.

HENROT, P. et al. Cellular interplay in skeletal muscle regeneration and wasting: insights from animal models. Journal of Cachexia, Sarcopenia and Muscle, v. 14, n. 2, p. 745–757, 21 fev. 2023. DOI: https://doi.org/10.1002/jcsm.13103

JEYARAMAN, Madhan et al. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells?. World Journal of Methodology, v. 13, n. 2, p. 10, 2023. DOI: https://doi.org/10.5662/wjm.v13.i2.10

JIA, Shuo et al. Advances in 3D bioprinting technology for functional corneal reconstruction and regeneration. Frontiers in Bioengineering and Biotechnology, v. 10, p. 1065460, 2023. DOI: https://doi.org/10.3389/fbioe.2022.1065460

KUES, Wilfried A. et al. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Current Stem Cell Research & Therapy, v. 17, n. 3, p. 267-279, 2022. DOI: https://doi.org/10.2174/1574888X16666211124095527

LUMELSKY, N. Creating a pro-regenerative tissue microenvironment: local control is the key. Frontiers in Bioengineering and Biotechnology, v. 9, p. 712685, 2021. DOI: https://doi.org/10.3389/fbioe.2021.712685

LYNCH, R. I.; LAVELLE, E. C. Immuno-modulatory biomaterials as anti-inflammatory therapeutics. Biochemical Pharmacology, v. 197, p. 114890, 2022. DOI: https://doi.org/10.1016/j.bcp.2021.114890

MASHANOV, V. S. et al. Echinoderm radial glia in adult cell renewal, indeterminate growth, and regeneration. Frontiers in Neural Circuits, v. 17, p. 1258370, 2023. DOI: https://doi.org/10.3389/fncir.2023.1258370

MATAI, I. et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, v. 226, p. 119536, out. 2019. DOI: https://doi.org/10.1016/j.biomaterials.2019.119536

MOURÃO, C. F. et al. Standardization of Animal Models and Techniques for Platelet-Rich Fibrin Production: A Narrative Review and Guideline. Bioengineering, v. 10, n. 4, p. 482, 2023. DOI: https://doi.org/10.3390/bioengineering10040482

OKAMURA, D. M. et al. Mammalian organ regeneration in spiny mice. Journal of Muscle Research and Cell Motility, v. 44, n. 2, p. 39-52, 2023. DOI: https://doi.org/10.1007/s10974-022-09631-3

PEARSON, Bret J. Finding the potency in planarians. Communications Biology, v. 5, n. 1, p. 970, 2022. DOI: https://doi.org/10.1038/s42003-022-03905-9

PETROSYAN, Astgik et al. Regenerative medicine technologies applied to transplant medicine. An update. Frontiers in Bioengineering and Biotechnology, v. 10, p. 1015628, 2022. DOI: https://doi.org/10.3389/fbioe.2022.1015628

PUSHPARAJ, K. et al. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life, v. 13, n. 4, p. 954, 2023. DOI: https://doi.org/10.3390/life13040954

QIAN, H. et al. Decellularized matrix for repairing intervertebral disc degeneration: Fabrication methods, applications and animal models. Materials Today Bio, v. 18, p. 100523, 2023. DOI: https://doi.org/10.1016/j.mtbio.2022.100523

REHMAN, A. et al. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. Medicina (Kaunas, Lithuania), v. 59, n. 8, p. 1449, 2023. DOI: https://doi.org/10.3390/medicina59081449

SAFINA, I.; EMBREE, M. C. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomaterialia, v. 143, p. 26-38, 2022. DOI: https://doi.org/10.1016/j.actbio.2022.03.014

VOGEL, Adam M. et al. Synthetic biology for improving cell fate decisions and tissue engineering outcomes. Emerging topics in life sciences, v. 3, n. 5, p. 631-643, 2019. DOI: https://doi.org/10.1042/ETLS20190091

VU, Thi Van Anh et al. Extracellular Matrix-Based Approaches in Cardiac Regeneration: Challenges and Opportunities. International Journal of Molecular Sciences, v. 23, n. 24, p. 15783, 2022. DOI: https://doi.org/10.3390/ijms232415783

WALCZYŃSKA, Katarzyna S.; ZHU, Ling; LIANG, Yujun. Insights into the role of the Wnt signaling pathway in the regeneration of animal model systems. The International Journal of Developmental Biology, v. 67, n. 3, p. 65-78, 2023. DOI: https://doi.org/10.1387/ijdb.220144yl

WEINBERGER, M.; RILEY, P. R. Animal models to study cardiac regeneration. Nature Reviews Cardiology, p. 1-17, 2023.

YAN, X., Liu, X., ZHAO, C.; CHEN, G. Q. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduction and Targeted Therapy, v. 8, n. 1, p. 199, 2023. DOI: https://doi.org/10.1038/s41392-023-01440-5

ZHAO, Y. et al. Emerging roles of mitochondria in animal regeneration. Cell Regeneration, v. 12, n. 1, p. 1-11, 2023. DOI: https://doi.org/10.1186/s13619-023-00158-7

ZHENG, B.; TUSZYNSKI, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nature Reviews Molecular Cell Biology, v. 24, n. 6, p. 396-413, 2023. DOI: https://doi.org/10.1038/s41580-022-00562-y

Downloads

Publicado

09/03/2024

Como Citar

Pagani Pavan, I., Giacinti, G. M., Alvarenga, F. dos S., Martins, I. M., Campanharo, C. V., Casotti, M. C., … Meira, D. D. (2024). ADVANCES IN BIOTECHNOLOGY FOR CELLULAR AND TISSUE REGENERATION: CHALLENGES AND PERSPECTIVES IN HUMAN DISEASE TREATMENT. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 5(3), e534956. https://doi.org/10.47820/recima21.v5i3.4956