MAGNETIC SCAFFOLDS MADE OF CHITOSAN AND/OR HYDROXYAPATITE FOR BONE TISSUE REGENERATION: A REVIEW OF THE LITERATURE
DOI:
https://doi.org/10.47820/recima21.v4i3.2936Keywords:
Magnetic scaffolds. Chitosan. Hydroxyapatite. Bone Regeneration.Abstract
The incorporation and exploration of particles with magnetic properties as an enhancer of bone regeneration processes through three-dimensional scaffolds has been a strategy in bone tissue engineering, which allows obtaining structures with responsive capacity to external stimuli, intelligent and bioactive. In this sense, this paper proposes a systematic review based on primary research articles focusing on magnetic chitosan and/or hydroxyapatite scaffolds in bone tissue regeneration. To this end, a search was performed on the platforms Science Direct, Pubmed and Web of Science in the period between 2020 and 2022 and the review was conducted using the Start software. Inclusion criteria were used to select the most relevant journals and it was observed that among the magnetic chitosan and/or hydroxyapatite scaffold strategies reported, the most significant involved induction of endochondral osteogenesis, increase in blood vessel formation pathways in injured bone tissue, drug delivery system, delivery of growth factors, and tumor cell combat. The results showed that these systems have promising potential for application in bone regeneration.
Downloads
References
Aghajanian, A. H., Bigham, A., Sanati, A., Kefayat, A., Salamat, M. R., Sattary, M., & Rafienia, M. (2022). A 3D macroporous and magnetic Mg2SiO4-CuFe2O4 scaffold for bone tissue regeneration: Surface modification, in vitro and in vivo studies. Biomaterials Advances, 137, 212809.
Bakhtiary, N., Pezeshki-Modaress, M., & Najmoddin, N. (2022). Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chemical Engineering Science, 264, 118144.
Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083.
Brahimi, S., Ressler, A., Boumchedda, K., Hamidouche, M., Kenzour, A., Djafar, R., . . . Ivanković, H. (2022). Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks. Materials Chemistry and Physics, 276, 125421.
Cai, B., Zou, Q., Zuo, Y., Li, L., Yang, B., & Li, Y. (2016). Fabrication and cell viability of injectable n-HA/chitosan composite microspheres for bone tissue engineering. RSC Advances, 6(89), 85735-85744.
Chaves, A. V., Freire, R. M., Feitosa, V. P., Ricardo, N. M., Denardin, J. C., Andrade Neto, D. M., & Fechine, P. B. (2021). Hydroxyapatite-Based Magnetic Bionanocomposite as Pharmaceuticals Carriers in Chitosan Scaffolds. Journal of Composites Science, 5(2).
Chen, M., Tan, H., Xu, W., Wang, Z., Zhang, J., Li, S., . . . Niu, X. (2022). A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomaterialia, 153, 159-177.
Cojocaru, F. D., Balan, V., Tanase, C.-E., Popa, I. M., Butnaru, M., Bredetean, O., . . . Verestiuc, L. (2021). Development and characterisation of microporous biomimetic scaffolds loaded with magnetic nanoparticles as bone repairing material. Ceramics International, 47(8), 11209-11219.
Dasari, A., Xue, J., & Deb, S. (2022). Magnetic Nanoparticles in Bone Tissue Engineering. Nanomaterials, 12(5).
De Witte, T. M., Fratila-Apachitei, L. E., Zadpoor, A. A., & Peppas, N. A. (2018). Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomaterials, 5(4), 197-211.
Fan, T., Chen, J., Pan, P., Zhang, Y., Hu, Y., Liu, X., . . . Zhang, Q. (2016). Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 147, 217-223.
Ge, Y.-W., Chu, M., Zhu, Z.-Y., Ke, Q.-F., Guo, Y.-P., Zhang, C.-Q., & Jia, W.-T. (2022). Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis. Materials Today Bio, 16, 100439.
Gelmi, A., & Schutt, C. E. (2021). Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Advanced Healthcare Materials, 10(1), 2001125.
Hu, Y., Cao, S., Chen, J., Zhao, Y., He, F., Li, Q., . . . Shi, C. (2020). Biomimetic fabrication of icariin loaded nano hydroxyapatite reinforced bioactive porous scaffolds for bone regeneration. Chemical Engineering Journal, 394, 124895.
Jasemi, A., Kamyab Moghadas, B., Khandan, A., & Saber-Samandari, S. (2022). A porous calcium-zirconia scaffolds composed of magnetic nanoparticles for bone cancer treatment: Fabrication, characterization and FEM analysis. Ceramics International, 48(1), 1314-1325.
Li, K., Zhang, Y., Xu, J., Wang, J., Gu, X., Li, P., & Fan, Y. (2021). Three-dimensional magnetic fibrous scaffold with icariin expanded by supercritical CO2 for bone tissue engineering under static magnetic field. Composites Part B: Engineering, 226, 109304.
Li, S., Dong, C., & Lv, Y. (2022). Magnetic liquid metal scaffold with dynamically tunable stiffness for bone tissue engineering. Biomaterials Advances, 139, 212975.
Lin, H.-Y., Huang, H.-Y., Shiue, S.-J., & Cheng, J.-K. (2020). Osteogenic effects of inductive coupling magnetism from magnetic 3D printed hydrogel scaffold. Journal of Magnetism and Magnetic Materials, 504, 166680.
Liu, X., Li, Y., Sun, Y., Chen, B., Du, W., Li, Y., & Gu, N. (2022). Construction of functional magnetic scaffold with temperature control switch for long-distance vascular injury. Biomaterials, 290, 121862.
Liu, X., Wu, Y., Zhao, X., & Wang, Z. (2021). Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydrate Polymers, 267, 118179.
Maia, F. R., Bastos, A. R., Oliveira, J. M., Correlo, V. M., & Reis, R. L. (2022). Recent approaches towards bone tissue engineering. Bone, 154, 116256.
Mayerhoff, D. V. L. Z. (2009). Uma Análise sobre os Estudos de Prospecção Tecnológica. Cadernos de Prospecção, 1(1), 7-9.
Meshkini, A., Sistanipour, E., & Izadi, A. (2022). Mg.ATP-decorated ultrafine magnetic nanofibers: A bone scaffold with high osteogenic and antibacterial properties in the presence of an electromagnetic field. Colloids and Surfaces B: Biointerfaces, 210, 112256.
Naghdi, M., Ghovvati, M., Rabiee, N., Ahmadi, S., Abbariki, N., Sojdeh, S., . . . Zarrabi, A. (2022). Magnetic nanocomposites for biomedical applications. Advances in Colloid and Interface Science, 308, 102771.
Nazeer, M. A., Yilgör, E., & Yilgör, I. (2017). Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications. Carbohydrate Polymers, 175, 38-46.
Shao, H., Wu, J., Wang, S., Duan, J., Zhang, Y., Peng, J., & Lin, T. (2022). 3D gel-printing of porous MgFe2O4 magnetic scaffolds for bone tissue engineering. Ceramics International, 48(5), 7183-7191.
Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials (Basel), 8(9), 5744-5794.
Shuai, C., Yang, W., He, C., Peng, S., Gao, C., Yang, Y., . . . Feng, P. (2020). A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials & Design, 185, 108275.
Tang, Y.-Q., Wang, Q.-Y., Ke, Q.-F., Zhang, C.-Q., Guan, J.-J., & Guo, Y.-P. (2020). Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chemical Engineering Journal, 387, 124166.
Xia, Y., Sun, J., Zhao, L., Zhang, F., Liang, X.-J., Guo, Y., . . . Xu, H. H. K. (2018). Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials, 183, 151-170.
Xing, F., Chi, Z., Yang, R., Xu, D., Cui, J., Huang, Y., . . . Liu, C. (2021). Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. International Journal of Biological Macromolecules, 184, 170-180.
Xu, X.-L., Shu, G.-F., Wang, X.-J., Qi, J., Jin, F.-Y., Shen, Q.-Y., . . . Du, Y.-Z. (2020). Sialic acid-modified chitosan oligosaccharide-based biphasic calcium phosphate promote synergetic bone formation in rheumatoid arthritis therapy. Journal of Controlled Release, 323, 578-590.
Zafeiris, K., Brasinika, D., Karatza, A., Koumoulos, E., Karoussis, I. K., Kyriakidou, K., & Charitidis, C. A. (2021). Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Materials Science and Engineering: C, 119, 111639.
Zhang, L., Yang, G., Johnson, B. N., & Jia, X. (2019). Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 84, 16-33.
Zhang, Y., Li, J., & Habibovic, P. (2022). Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioactive Materials, 15, 372-381.
Zhao, P.-P., Ge, Y.-W., Liu, X.-L., Ke, Q.-F., Zhang, J.-W., Zhu, Z.-A., & Guo, Y.-P. (2020). Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chemical Engineering Journal, 381, 122694.
Zhou, Y., Liu, X., She, H., Wang, R., Bai, F., & Xiang, B. (2022). A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects. Regenerative Therapy, 21, 307-321.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.