SCAFFOLDS MAGNÉTICOS DE QUITOSANA E/OU HIDROXIAPATITA PARA REGENERAÇÃO DE TECIDO ÓSSEO: UMA REVISÃO SISTEMÁTICA

Autores

DOI:

https://doi.org/10.47820/recima21.v4i3.2936

Palavras-chave:

Scaffolds magnéticos. Quitosana. Hidroxiapatita. Regeneração Óssea.

Resumo

A incorporação e a exploração de partículas com propriedades magnéticas como um potencializador dos processos de regeneração óssea por meio de scaffolds tridimensionais tem sido uma estratégia na engenharia de tecido ósseo, o que possibilita obtenção de estruturas com capacidade responsiva à estimulos externos, inteligentes e bioativos. Nesse sentido, este artigo propõe uma revisão sistemática baseada em artigos de pesquisa primária com foco em scaffolds magnéticos de quitosana e/ou hidroxiapatita na regeneração do tecido ósseo. Com este fim foi realizada uma busca nas plataformas Science Direct, Pubmed e Web of Science no período entre 2020 a 2022 e a revisão foi conduzida por meio do software Start. Critérios de inclusão foram utilizados para a seleção dos periódicos mais relevantes e observou-se que dentre as estratégias de scaffolds magnéticos de quitosana e/ou hidroxiapatita reportadas, as mais significatvvias envolveram indução da osteogenese endocondral, aumento nas vias de formação de vasos sanguineos no tecido ósseo lesado, sistema de liberação de fármaco, entrega de fatores de crescimento e combate de células tumorais. Os resultados demonstraram esses sistemas apresentam potencial promissor de aplicação em regeneração óssea.

Downloads

Não há dados estatísticos.

Biografias Autor

Danyelle Garcia Guedes

UFCG - Universidade Federal de Campina Grande.

Maria Eduarda Cunha

UFCG - Universidade Federal de Campina Grande.

Renally Gomes Araújo

UFCG - Universidade Federal de Campina Grande.

Adriano Lima da Silva

UFCG - Universidade Federal de Campina Grande.

Marcelino Guedes de Lima

UEPB - Universidade Estadual da Paraiba.

Fabio Gondim Nepomuceno

UFCG - Universidade Federal de Campina Grande

Ana Cristina Figueiredo de Melo Costa

UFCG - Universidade Federal de Campina Grande.

Referências

Aghajanian, A. H., Bigham, A., Sanati, A., Kefayat, A., Salamat, M. R., Sattary, M., & Rafienia, M. (2022). A 3D macroporous and magnetic Mg2SiO4-CuFe2O4 scaffold for bone tissue regeneration: Surface modification, in vitro and in vivo studies. Biomaterials Advances, 137, 212809.

Bakhtiary, N., Pezeshki-Modaress, M., & Najmoddin, N. (2022). Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chemical Engineering Science, 264, 118144.

Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083.

Brahimi, S., Ressler, A., Boumchedda, K., Hamidouche, M., Kenzour, A., Djafar, R., . . . Ivanković, H. (2022). Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks. Materials Chemistry and Physics, 276, 125421.

Cai, B., Zou, Q., Zuo, Y., Li, L., Yang, B., & Li, Y. (2016). Fabrication and cell viability of injectable n-HA/chitosan composite microspheres for bone tissue engineering. RSC Advances, 6(89), 85735-85744.

Chaves, A. V., Freire, R. M., Feitosa, V. P., Ricardo, N. M., Denardin, J. C., Andrade Neto, D. M., & Fechine, P. B. (2021). Hydroxyapatite-Based Magnetic Bionanocomposite as Pharmaceuticals Carriers in Chitosan Scaffolds. Journal of Composites Science, 5(2).

Chen, M., Tan, H., Xu, W., Wang, Z., Zhang, J., Li, S., . . . Niu, X. (2022). A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomaterialia, 153, 159-177.

Cojocaru, F. D., Balan, V., Tanase, C.-E., Popa, I. M., Butnaru, M., Bredetean, O., . . . Verestiuc, L. (2021). Development and characterisation of microporous biomimetic scaffolds loaded with magnetic nanoparticles as bone repairing material. Ceramics International, 47(8), 11209-11219.

Dasari, A., Xue, J., & Deb, S. (2022). Magnetic Nanoparticles in Bone Tissue Engineering. Nanomaterials, 12(5).

De Witte, T. M., Fratila-Apachitei, L. E., Zadpoor, A. A., & Peppas, N. A. (2018). Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomaterials, 5(4), 197-211.

Fan, T., Chen, J., Pan, P., Zhang, Y., Hu, Y., Liu, X., . . . Zhang, Q. (2016). Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 147, 217-223.

Ge, Y.-W., Chu, M., Zhu, Z.-Y., Ke, Q.-F., Guo, Y.-P., Zhang, C.-Q., & Jia, W.-T. (2022). Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis. Materials Today Bio, 16, 100439.

Gelmi, A., & Schutt, C. E. (2021). Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Advanced Healthcare Materials, 10(1), 2001125.

Hu, Y., Cao, S., Chen, J., Zhao, Y., He, F., Li, Q., . . . Shi, C. (2020). Biomimetic fabrication of icariin loaded nano hydroxyapatite reinforced bioactive porous scaffolds for bone regeneration. Chemical Engineering Journal, 394, 124895.

Jasemi, A., Kamyab Moghadas, B., Khandan, A., & Saber-Samandari, S. (2022). A porous calcium-zirconia scaffolds composed of magnetic nanoparticles for bone cancer treatment: Fabrication, characterization and FEM analysis. Ceramics International, 48(1), 1314-1325.

Li, K., Zhang, Y., Xu, J., Wang, J., Gu, X., Li, P., & Fan, Y. (2021). Three-dimensional magnetic fibrous scaffold with icariin expanded by supercritical CO2 for bone tissue engineering under static magnetic field. Composites Part B: Engineering, 226, 109304.

Li, S., Dong, C., & Lv, Y. (2022). Magnetic liquid metal scaffold with dynamically tunable stiffness for bone tissue engineering. Biomaterials Advances, 139, 212975.

Lin, H.-Y., Huang, H.-Y., Shiue, S.-J., & Cheng, J.-K. (2020). Osteogenic effects of inductive coupling magnetism from magnetic 3D printed hydrogel scaffold. Journal of Magnetism and Magnetic Materials, 504, 166680.

Liu, X., Li, Y., Sun, Y., Chen, B., Du, W., Li, Y., & Gu, N. (2022). Construction of functional magnetic scaffold with temperature control switch for long-distance vascular injury. Biomaterials, 290, 121862.

Liu, X., Wu, Y., Zhao, X., & Wang, Z. (2021). Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydrate Polymers, 267, 118179.

Maia, F. R., Bastos, A. R., Oliveira, J. M., Correlo, V. M., & Reis, R. L. (2022). Recent approaches towards bone tissue engineering. Bone, 154, 116256.

Mayerhoff, D. V. L. Z. (2009). Uma Análise sobre os Estudos de Prospecção Tecnológica. Cadernos de Prospecção, 1(1), 7-9.

Meshkini, A., Sistanipour, E., & Izadi, A. (2022). Mg.ATP-decorated ultrafine magnetic nanofibers: A bone scaffold with high osteogenic and antibacterial properties in the presence of an electromagnetic field. Colloids and Surfaces B: Biointerfaces, 210, 112256.

Naghdi, M., Ghovvati, M., Rabiee, N., Ahmadi, S., Abbariki, N., Sojdeh, S., . . . Zarrabi, A. (2022). Magnetic nanocomposites for biomedical applications. Advances in Colloid and Interface Science, 308, 102771.

Nazeer, M. A., Yilgör, E., & Yilgör, I. (2017). Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications. Carbohydrate Polymers, 175, 38-46.

Shao, H., Wu, J., Wang, S., Duan, J., Zhang, Y., Peng, J., & Lin, T. (2022). 3D gel-printing of porous MgFe2O4 magnetic scaffolds for bone tissue engineering. Ceramics International, 48(5), 7183-7191.

Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials (Basel), 8(9), 5744-5794.

Shuai, C., Yang, W., He, C., Peng, S., Gao, C., Yang, Y., . . . Feng, P. (2020). A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials & Design, 185, 108275.

Tang, Y.-Q., Wang, Q.-Y., Ke, Q.-F., Zhang, C.-Q., Guan, J.-J., & Guo, Y.-P. (2020). Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chemical Engineering Journal, 387, 124166.

Xia, Y., Sun, J., Zhao, L., Zhang, F., Liang, X.-J., Guo, Y., . . . Xu, H. H. K. (2018). Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials, 183, 151-170.

Xing, F., Chi, Z., Yang, R., Xu, D., Cui, J., Huang, Y., . . . Liu, C. (2021). Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. International Journal of Biological Macromolecules, 184, 170-180.

Xu, X.-L., Shu, G.-F., Wang, X.-J., Qi, J., Jin, F.-Y., Shen, Q.-Y., . . . Du, Y.-Z. (2020). Sialic acid-modified chitosan oligosaccharide-based biphasic calcium phosphate promote synergetic bone formation in rheumatoid arthritis therapy. Journal of Controlled Release, 323, 578-590.

Zafeiris, K., Brasinika, D., Karatza, A., Koumoulos, E., Karoussis, I. K., Kyriakidou, K., & Charitidis, C. A. (2021). Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Materials Science and Engineering: C, 119, 111639.

Zhang, L., Yang, G., Johnson, B. N., & Jia, X. (2019). Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 84, 16-33.

Zhang, Y., Li, J., & Habibovic, P. (2022). Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioactive Materials, 15, 372-381.

Zhao, P.-P., Ge, Y.-W., Liu, X.-L., Ke, Q.-F., Zhang, J.-W., Zhu, Z.-A., & Guo, Y.-P. (2020). Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chemical Engineering Journal, 381, 122694.

Zhou, Y., Liu, X., She, H., Wang, R., Bai, F., & Xiang, B. (2022). A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects. Regenerative Therapy, 21, 307-321.

Publicado

21/03/2023

Como Citar

Garcia Guedes, D., Cunha, M. E., Gomes Araújo, R., Silva , A. L. da, Guedes de Lima, M., Gondim Nepomuceno, F., & Figueiredo de Melo Costa, A. C. (2023). SCAFFOLDS MAGNÉTICOS DE QUITOSANA E/OU HIDROXIAPATITA PARA REGENERAÇÃO DE TECIDO ÓSSEO: UMA REVISÃO SISTEMÁTICA. RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218, 4(3), e432936. https://doi.org/10.47820/recima21.v4i3.2936